Как из водорослей получить биотопливо. Производство биотоплива из водорослей, опилок и рапса. Из табуреток? Из опилок? Из водорослей

Биодизель - это многокомпонентное жидкое топливо, состоящее из метиловых или этиловых эфиров высших ненасыщенных и жирных кислот, получаемых в результате химической реакции, в основном путем этерификации растительных масел (рапсового, соевого, пальмового, подсолнечного, льняного и др.), а также путем переэтерификации жиров (животных и кормовых). В последнее время отрабатываются новые технологии производства биодизеля, такие как обработка растительного сырья генно-модифицированными микроорганизмами (в Калифорнийском университете совместно с компанией LSG, США, разработали генно-модифицированный штамм бактерии E. Coli, обладающий способностью превращать целлюлозу и гемицеллюлозы в биодизель), использование «отработанных» растительных масел, которые собирают в ресторанах и кафе, производство из сырья микробного происхождения и некоторые другие. К примеру, в связи с тем, что ресурсы растительных масел, получаемых из сельскохозяйственных культур, ограниченны, сегодня во всем мире проводятся широкие исследования в сфере использования разных - и имеющихся в природе, и вновь культивированных специальных видов водорослей как перспективного сырья для производства биодизеля.

Биодизель рассматривается в государствах ЕС как основное возобновляемое жидкое биотопливо. Объем его производства растет быстрыми темпами. Объем выпуска биодизеля в мире с 2002 года (1,2 млн т) достиг к 2010 году 18 млн т (в 2009 году - 14 млн т). Согласно прогнозам, при такой тенденции к 2020 году объем производства биодизеля в мире составит 100 млн т в год.

Лидером в изготовлении и использовании биодизеля в Европе является ФРГ - около 3 млн т в 2012 году (в основном из рапса) при технической возможности производства всех заводов 5 млн т в год. Второе место занимает Франция: около 2 млн т в год. Всего в Европе, по аналитическим данным ЕС на 2013 год, в эксплуатации находятся 256 заводов по производству биодизельного топлива. В ЕС с 2008 года, когда неурожай рапса привел к снижению производства биодизеля и, соответственно, росту его импорта, стала актуальной конкуренция европейских и заокеанских производителей этого вида топлива. Производители биодизеля из Аргентины и Индонезии за счет значительных государственных субсидий смогли поставлять его на европейские рынки по цене, которая ниже цены самого сырья (того же пальмового масла). Поэтому в 2012 году в некоторых европейских странах, в частности ФРГ, был принят ряд антидемпинговых законов и повышены импортные пошлины на ввоз биодизеля из этих стран.

В США биодизель получают в основном из соевого масла (оно составляет 30% всего сырья, используемого в мире для производства биодизеля, а рапсовое и пальмовое с незначительным количеством других масел делят остальные 70%). Биодизель в США используется на автотранспорте и как печное топливо. Доля жидкого биотоплива на рынке США составляет более 5%. В связи с тем, что технологии получения перечисленных выше масел высокозатратны, ведутся поиски более дешевых растений. Так, уже успешно начали использовать ятрофу (семейство молочайных), рыжик (семейство капустных).

В последние несколько лет производители биодизеля все больше внимания обращают на клещеви́ну (лат. Rнcinus ), растение семейства молочайных. Это масличное лекарственное и декоративное садовое растение. Из клещевины методом холодного прессования получают касторовое масло, среди растительных масел характеризующееся одним из самых высоких цетановых чисел.

Руководство бразильского агроконцерна Agrakonzern SLG поставило цель производить касторовое масло по новым технологиям себестоимостью $50 США за баррель (для сравнения: баррель соевого масла стоит $170).

Выход биодизеля из различных масличных культур составляет (л/га): из рапса - 1100, из подсолнечника - 690, из сои - 400. В Германии, например, для производства биодизеля используется в основном рапсовое масло. Рапс - неприхотливая культура, и его можно выращивать на выведенных из оборота землях. Он повышает биологическую активность и структуру почвы, очищает ее от азота. Биодизель в ФРГ дешевле обыкновенного дизельного топлива, несмотря на то, что существует налог на биодизельное топливо. Возделывание рапса субсидируется федеральным бюджетом.

Рассмотрим в общих чертах основную на сегодня технологию производства биодизеля методом этерификации растительных масел.

Любое растительное масло - это смесь триглицеридов (эфиров), соединенных с молекулой глицерина с трехатомным спиртом (C 3 H 8 O 3). Именно глицерин придает вязкость и плотность растительному маслу. Для получения биодизеля необходимо удалить глицерин, заместив его спиртом. Этот процесс (химическая реакция образования сложных эфиров при взаимодействии кислот и спиртов) называется этерификацией.

Исходное сырье (масло) подается в блок этерификации, куда одновременно поступают метанол (при соотношении с маслом от 1:4 до 1:20) и раствор катализатора (гидроксиды натрия или калия, либо метилат натрия, составляющие от 0,3 до 1,5% объема всего перерабатываемого сырья) для осуществления процесса этерификации. По окончании процесса в результате отстаивания смесь, полученная в блоке этерификации, разделяется на два слоя: верхний - смесь метиловых эфиров и метанола, нижний - глицерин (с небольшим количеством метанола). Верхний слой направляется в блок отгонки метанола, из которого метанол возвращается в блок этерификации, а оставшийся сырой продукт - метиловый эфир (биодизель) - поступает последовательно в блок промывки и сушильную камеру.

Процесс этерификации длится от 20 мин. до нескольких часов при рабочей температуре 65°С.

Получаемый из нижнего слоя путем отгонки метанола в блок этерификации побочный продукт - сырой глицерин - широко используется в фармацевтической и лакокрасочной промышленности. Кстати, глицерин можно также переработать в биотопливо - биоэтанол с выходом до 95%.

Применяются еще технологии этерификации без катализатора и при суперкритических режимах. В первом варианте вместо катализаторов в этерификационный реактор вводится специальный растворитель: тетрагидрофуран. За счет этого повышается растворимость компонентов в реакторе, снижается до 30°С температура процесса, сокращается до 10 мин. его продолжительность. Смесь четко разделяется на эфирный и глицериновый слой. Отпадает необходимость в промывке и сушке продукта.

Во втором варианте процесс этерификации проводится при высокой - до 400°С - температуре и давлении до 80 атм., что также позволяет обходиться без катализаторов и сокращает продолжительность процесса в реакторе до 5 мин.

У биодизеля (метилового эфира) теплотворная способность в среднем 37,6 МДж/кг и высокое цетановое число (51-58) в сравнении с нефтяным дизтопливом, у которого оно составляет 50-52. А чем выше цетановое число, тем лучше топливо. Биодизель можно использовать как в чистом виде, так и в качестве добавки к дизельному топливу.

Таблица 1. Сравнение основных показателей стандартов
биодизеля в ЕС и дизтоплива в РФ

Биодизель биологически безвреден. При попадании в воду он не причиняет вреда водной флоре и фауне. В воде или почве подвергается почти полному биологическому распаду (до 99% в течение месяца), поэтому при использовании биодизеля на речных и морских судах можно существенно минимизировать загрязнение водных ресурсов планеты. При сгорании биодизеля в атмосферу выбрасывается значительно меньше СО 2 , чем при сгорании обычных видов топлива. Кроме того, преимущества биодизеля перед ними очевидны ввиду низких характеристик продуктов сгорания: монооксида углерода, остаточных частиц, сажи и, что особенно важно, полициклических ароматических углеводородов (известных как канцерогенные вещества). Биодизель в сравнении с минеральным дизтопливом почти не содержит серы (10,0 мг/кг). Поэтому в некоторых государствах на биодизельное топливо переводят муниципальный транспорт, проводятся испытания по использованию биодизеля в качестве авиационного топлива.

У биодизеля хорошие смазочные характеристики. Известно, что дизтопливо при устранении из него сернистых соединений теряет смазочные способности. А вот биодизель, несмотря на малое содержание серы, характеризуется хорошими смазочными свойствами, что обуславливается его химическим составом и содержанием в нем кислорода. За счет этого свойства увеличивается срок службы двигателя: во время работы двигателя одновременно происходит смазка его подвижных частей и топливного насоса.

У биодизеля высокая температура вспышки (выше 100°С), что позволяет называть его более безопасным в сравнении с обычным дизтопливом.

Есть, конечно, у биодизеля и ряд недостатков. Прежде всего это низкая морозоустойчивость, поэтому в холодное время его необходимо прогревать или разбавлять обыкновенным дизтопливом. В неразведенном виде биодизель может повредить резиновые шланги и прокладки, поэтому часто требуется их замена изделиями из более стойких материалов. Биодизель не подлежит длительному хранению. В табл. 1 приведены основные показатели стандартов биодизеля в Европе и нефтяного дизтоплива в России.

Бионефть

Бионефть - это смесь жидких углеводородов и других органических веществ, получаемых из сырья растительного или биологического происхождения. Бионефть - условное название, так как содержание углеводородов в ней всего 5-10%, а остальное - спирты, лигнины, альдегиды и пр. Существуют следующие термические или термохимические способы производства бионефти из растительной биомассы: пиролиз, газификация, парокрекинг, гидрокрекинг.

В результате пиролиза (процесса разложения сырья при нагревании до 450-550°С при отсутствии кислорода) сырье превращается в уголь, а также жидкие и газообразные продукты. При этом жидкие продукты пиролиза могут быть использованы в качестве топлива, которое в последние годы получило название «бионефть», «биомазут» или «пиролизная жидкость». Для увеличения выхода бионефти (до 80% общего объема сухого сырья на входе) применяется так называемый быстрый пиролиз: процесс пиролиза длится несколько секунд при очень высокой температуре - до 1000°С. Теплота сгорания бионефти составляет 16-19 МДж/кг, что значительно ниже теплоты сгорания углеводородного топлива. В Финляндии в этом году финским энергетическим концерном Fortum впервые в мире будет построен завод по производству бионефти из древесной щепы методом пиролиза; производительность предприятия составит 50 тыс. т в год. Для производства бионефти потребуется ежегодно 600 тыс. м 3 древесины. Fortum известен в России по проекту строительства с нуля в г. Нягань (ХМАО - Югра) первой после развала СССР крупной электростанции (Няганской ГРЭС) общей мощностью 1260 МВт.

Бионефть и биоэтанол можно также получать из отходов сахарного производства - мелассной барды.

Биобензин

Биобензин (синтетический бензин) производили в промышленном масштабе еще в 30-40-е годы ХХ века в Германии из синтез-газа (метод Фишера - Тропша) при газификации ископаемых углей. В этом процессе можно также вместо угля использовать твердую биомассу, в том числе древесину. Но в настоящее время такой биобензин не производится, несмотря на то, что у биобензина есть важные экологические преимущества перед обычным бензином, такие как отсутствие соединений серы и азота, а также тяжелых металлов, кроме того, при сжигании биобензина не образуются канцерогенные соединения; главная причина - высокая себестоимость производства.

Растительные масла

Не все знают, что созданный немецким инженером Рудольфом Дизелем в 1897 году первый образец дизельного двигателя работал на растительном (арахисовом) масле.

Растительные масла (теплотворная способность 33-34 МДж/кг) используются в качестве моторного топлива довольно давно; накоплен значительный опыт по использованию подсолнечного, арахисового, соевого, кукурузного, рапсового и других масел. Наиболее широкое применение получило рапсовое масло, поскольку рапс является самой высокопродуктивной из масличных культур (на втором месте по продуктивности подсолнечник, на третьем - соя). Новым перспективным источником сырья для получения топливных масел могут стать водоросли, в которых содержание масла, близкого по составу к известным растительным, доходит до 40% общей массы при значительно большей, чем у последних, продуктивности. Например, при переработке рапса в масло за год с 1 акра пашни можно получить 265 л масла, а при культивировании водорослей с 1 акра водной поверхности - 20 тыс. л масла в год.

Германия является лидером не только в использовании биодизеля, но и в применении растительных масел в качестве моторного топлива (в основном рапсового масла). В США в качестве биотоплива из всех растительных масел используют преимущественно соевое. Масло из семян получают обычным прессованием (или экстракцией), при котором исходное сырье очищают от посторонних примесей, затем смешивают с растворителем - экстрагентом (в качестве которого используют бензин, гексан или этанол) - и перемешивают в течение определенного времени, после чего отделенную от жмыха оставшуюся смесь разделяют на растворитель, который возвращается в блок экстракции, и сырое нерафинированное масло.

Выход масел при использовании технологии прессования составляет 28-29%, а при экстракции - 40-42% по отношению к исходному сырью (при содержании масел в нем 45-50%).

Растительные масла как топливо характеризуются более высокой энергетической плотностью в сравнении со спиртами, но эксплуатационные качества у них хуже, чем у спиртов, в частности: высокая вязкость и большая склонность к образованию нагара. Поэтому предпочтительно использование растительных масел в смеси с дизельным топливом. Смесь рапсового масла с дизельным топливом называют биодизельной смесью, или биодитом.

BTL (Biomass-to-Liquid)

BTL (Biofuel-to-Liquid) - один из видов жидкого биотоплива (теплотворная способность в среднем 33,5 МДж/кг), инновационная технология производства которого была разработана совсем недавно, в 2000-е годы с участием таких компаний с мировым именем, как Shell, Daimler, Volkswagen, и инновационной компании Choren GmbH. Первый завод по производству BTL был построен в немецком Фрайбурге в 2007 году. Сырьевая база производства - более 70 тыс. т отходов деревообрабатывающей промышленности, лесопиления и ландшафтных работ. На сегодня технология BTL считается наиболее перспективной для получения жидкого биотоплива. Для производства BTL подходит любой вид твердой биомассы: древесная щепа, опил, солома, отходы АПК, а также мискантус и другие быстрорастущие плантационные растения, бытовые отходы и многое другое. По-этому производство BTL не нуждается в сырье в виде сельхозпродукции пищевого назначения (зерновые, масличные культуры), в отличие от производства биоэтанола и биодизеля, и таким образом не составляет конкуренцию по сырью пищевой промышленности. Для получения 1 кг BTL необходимо от 5 до 10 кг древесного сырья.

Производство BTL включает в себя комбинацию нескольких давно известных процессов: пиролиза, газификации в потоке при высокой температуре и процессов Фишера - Тропша, или MtG (Methanol-to-Gasoline).

На первой стадии подсушенное сырье (биомасса влажностью до 20%) подвергается низкотемпературному пиролизу при температуре 400-500°С. На выходе получают уголь, кокс и газосодержащую смолу. Смола затем сжигается при температуре выше температуры плавления золы (выше 1400°С) в камере сгорания, и получается газо-образная смесь СО и H 2 . Остатки золы и кокс поступают обратно в камеру сгорания, а газ проходит через скруббер, очищается от хлора и серы, а потом выполняется синтез Фишера - Тропша: при помощи кобальтового катализатора происходит соединение водорода и углерода и после очистки получается конечный продукт: BTL. BTL не содержит ароматических углеводородов и серы, у него высокое октановое число, при его использовании до 90% сокращаются выбросы СО 2 в атмосферу в сравнении с углеводородными видами топлива.

В последние годы во всем мире использование посевных продовольственных культур для производства жидких видов биотоплива считают нерациональным, так как такой вид их использования ведет к повышению цены на продовольствие. По-этому и начали производить жидкое биотопливо так называемого второго поколения: из посевных трав и разных растений, не используемых в пищевой промышленности и возделываемых на не пригодных для основных посевных культур землях, из водорослей, из бытовых отходов, из быстрорастущих плантационных растений, из отходов деревообработки и лесопиления, из соломы. Что касается древесного сырья, то, как уже отмечено выше, в мире существует немало разных технологий получения жидких видов биотоплива из целлюлозосодержащих материалов. Вот только стоимость производства, например, биоэтанола из такого сырья вдвое выше стоимости его производства из зерна... К тому же в ближайшее время вряд ли создадут технологии, которые позволят удешевить процесс. Поэтому будет ли жидкое биотопливо из целлюлозосодержащего сырья конкурентоспособно на рынке, пока сказать трудно.

По мнению автора, в России наибольшей эффективности производства и использования любых видов жидкого биотоплива, полученных из твердой биомассы, можно достигнуть в аграрном секторе. В АПК России ежегодно сжигается свыше 5 млн т дизельного топлива. Только на предприятиях АПК сокращение использования нефтяного дизельного топлива за счет биодизеля на 30% даст ежегодный экономический эффект более 10 млрд руб.

Что же касается древесных отходов, то их, за исключением тех, что используются на гидролизных заводах, лучше направить на производство твердого биотоплива. Недаром в одной из публикаций во влиятельном журнале Science указывается, что прямое сжигание целлюлозосодержащих растений с целью генерации электроэнергии для зарядки аккумуляторов электромобилей обеспечит этим авто более чем на 80% больший пробег, чем при использовании жидкого биотоплива, полученного при переработке этих растений.

Сергей ПЕРЕДЕРИЙ,
Дюссельдорф, Германия,
[email protected]

Водоросли являются одним из самых быстрорастущих растений на Земле. Их вес удваивается за сутки, а для роста требуется ресурсы, которых на Земле очень много: солнечный свет, вода и диоксид углерода. По своим энергетическим свойствам водоросли превосходят многие другие источники для производства биотоплива. Произрастание водорослей является управляемым и неприхотливым для человека процессом. Более того, водоросли за счет биосинтеза поглощают углекислый газ из атмосферы.

Основная проблема, которая в настоящее время затрудняет развитие промышленного производства водорослей, заключается в том, что водоросли очень чувствительны к перепадам температуры воды, которая вследствие этого должна поддерживаться в строго определенном диапазоне (резкие суточные колебания не допустимы). Так же промышленное производство водорослей затрудняется отсутствием эффективных способов сбора водорослей. Описанные выше трудности привели ученых к выводу о целесообразности выращивания водорослей только в закрытых и технологически удобных водоемах. Департамент Энергетики США исследовал водоросли с высоким содержанием масла. Исследователи пришли к выводу, что Калифорния, Гаваи и Нью-Мексико пригодны для промышленного производства водорослей в открытых прудах. В течение 6 лет водоросли выращивались в прудах площадью 1000 кв. метров. Урожайность составила более 50 грамм водорослей с 1 квадратного метра в день. Кроме выращивания водорослей в открытых прудах существуют технологии выращивания водорослей в малых биореакторах, расположенных вблизи электростанций. Сбросное тепло ТЭЦ способно покрыть до 77 % потребностей в тепле, необходимом для выращивания водорослей. Эта технология не требует жаркого пустынного климата.

В настоящее время налажено серийное производство микроводорослей, пригодных к немедленной эксплуатации, в специальных биореакторах, в которых водоросли размножаются путем деления.

Корпорация «Chevron», один из мировых энергетических гигантов, начала исследование возможности использования водорослей в качестве источника энергии для транспорта, в частности, для реактивных самолетов. Компания «Honeywell, UOP» недавно начала проект по производству военного реактивного топлива из водорослевых и растительных масел. Компания «Green Star Products» завершила вторую фазу испытаний демонстрационного завода по производству биодизеля из водорослей. Во время второй фазы выбирались оптимальные условия для выращивания водорослей. Крупная энергетическая компания Японии «Tokyo Gas Co» намерена построить демонстрационный завод, на котором из морских водорослей будут получать электричество. Для работы газовых генераторов на станции будет использоваться метан, выделяемый из мелко изрубленных водорослей. Для ряда японских префектур загрязнение побережья водорослями остается серьезной экологической проблемой. Они нередко выделяют при гниении зловонный запах и портят пейзаж. Между тем новейшая разработка японских специалистов предлагает решить эту проблему с экономической выгодой. Экспериментальная модель завода с газовым электрогенератором, которая уже работает в лаборатории несколько лет, позволяет в день перерабатывать до 1 тонны водорослей. При этом вырабатывается около 9,8 киловатт электроэнергии. Эта пилотная установка позволяет получать около 20–30 куб метров метана в месяц - этого объема достаточно, чтобы ровно на половину сократить месячный расход на электричество средней семьи.

Авиационная промышленность также заявила о начале разработок по использованию морских водорослей, в качестве сырья для производства авиационного топлива. Компания Боинг сообщила, что альтернативой биодизелю, произведенному из морских водорослей, в будущем может стать производство авиационного биотоплива. Согласно документу, никакое биотопливо, которое сегодня производится, не может быть использовано в качестве авиационного топлива. Этанол поглощает воду и разъедает двигатель и топливный провод, в то время как биодизель замерзает при низких температурах (на крейсерской высоте). Кроме того, биотопливо обладает более низкой термической стабильностью, чем обычное реактивное топливо. Специалисты Боинга считают, что оптимальным сырьем для производства биотоплива станут морские водоросли, из которых получают почти в 300 раз больше масла, чем из сои. По мнению компании Боинг, биотопливо из водорослей - это будущее для авиации. Так, если бы весь флот авиалиний мира по состоянию на 2004 год использовал 100% биотопливо, полученное из морских водорослей, понадобилась бы 322 млрд. литров масла. Для выращивания этих водорослей необходима земля площадью 3,4 млн. га. В расчете принято, что с одного гектара получается 6 500 литров ежегодно. Для этих целей, возможно, использовать земли, которые не пригодны для выращивания пищевых сельхозкультур.

Экология потребления.Наука и техника:Статья рассказывает о реальности и перспективах пищевого и энергетического использования водорослей, экономических и экологических аспектах производства водорослевого биотоплива.

Водоросли относятся к числу наиболее быстрорастущих живых организмов, что не могло не вызвать интереса к их использованию, как в пищевых, так и непосредственно энергетических целях - в качестве биотоплива. Активные исследования и культивирование водорослей идут начиная с 1960-х годов как в мире, так и в России. Статья рассказывает о реальности и перспективах пищевого и энергетического использования водорослей, экономических и экологических аспектах производства водорослевого биотоплива.

Водоросли в системе живых организмов

Начиная разговор о водорослях и их ценности для энергетики, нельзя не упомянуть, что вся энергия на Земле, за исключением приливной и геотермальной, является прямой или трансформированной энергией солнечных лучей.

Нагревание Солнцем поверхности суши приводит к движению воздуха, что создаёт ветряную энергию. В свою очередь, ветер на поверхности океана создаёт волновую энергию. Нагревание Солнцем водной поверхности ведёт к испарению воды и создаёт круговорот воды в природе, без которого не было бы энергии движущейся воды.

Наконец, без Солнца невозможны жизнь, прирост биомассы и биоэнергия. Более того, нефть, газ, уголь, торф - всё это именно биомасса, в различной степени трансформированная, и тоже производная от солнечной энергии.

Что касается водорослей, то эта группа живых организмов создаёт, без преувеличения, фундамент жизни на Земле, непосредственно используя солнечную энергию для роста.

Водоросли (лат. Algae) в обиходном понимании - это растения, связанные с водной средой обитания, что, однако, не всегда так. Водоросли - весьма неоднородная совокупность. Не все водоросли живут только в воде, равно как и не все водные растения относят к водорослям.

Живые организмы классифицируются различными способами. Принятая в настоящее время классификация включает два крупнейших подразделения (таксона) или две империи живых организмов:

1. Вирусы - доклеточные организмы.

2. Клеточные организмы. Клеточные организмы разбиваются на два основных таксона менее высокого порядка (надцарства или домена):

1. Прокариоты - организмы без выраженного ограниченного мембраной клеточного ядра.

2. Эукариоты - организмы с клеточным ядром.

Прокариоты включают в себя два царства организмов - археи или архебактерии и бактерии или эубактерии. Эукариоты - более обширная группа живых организмов, включающая уже известные царства грибов, растений и животных.

Организмы, объединяемые понятием «водоросли», находятся почти на всех ступенях таксономической лестницы клеточных организмов - от бактерий до растений (табл. 1) - и включают две основные группы: прокариотические водоросли - царство в домене прокариот, включающее подцарства (по другой классификации - отделы) сине-зелёных и прохлорофитовых водорослей; настоящие водоросли - подцарство в царстве растений, включающее ряд отделов.

Интересно, что таксономическое положение прокариотических сине-зелёных водорослей остаётся дискуссионным вопросом. Микробиологи Роже Стениер и Корнелис Ван Ниль, сформулировавшие теорию деления живых организмов на два глобальных домена - прокариоты и эукариоты, предложили считать термины «прокариот» и «бактерия» эквивалентными . С этого момента синезелёные водоросли классифицируются двояко - как бактерии (цианобактерии) и как растения, будучи фотосинтезирующими организмами. Кроме того, все клеточные живые организмы можно разбить на одноклеточные (простейшие, низшие, протисты) и многоклеточные (высшие) и выстроить классификацию на этой основе, выделяя простейших в отдельное царство. Среди водорослей есть и одноклеточные, и многоклеточные, а также колониальные организмы, образующие систему взаимосвязанных клеток.

Размеры водорослей варьируются в широком диапазоне - от 0,5–1 мкм (10–6 м) у ряда цианобактерий до десятков метров у некоторых растительных форм водорослей. Водоросли живут как в морских, так и в пресных водах, а также в почве.

Общим свойством зелёных растений и водорослей, в том числе прокариотических, является способность к фотосинтезу или преобразованию электромагнитной энергии солнечных лучей в энергию химических связей органических веществ, осуществляемому на свету благодаря наличию фотосинтезирующих пигментов - хлорофиллу у растений, бактериохлорофилла и бактериородопсина у прокариот.

Реакция фотосинтеза - трансформация углекислого газа и воды в глюкозу и кислород - выглядит так:

Для зелёных растений и водорослей фотосинтез является источником питания и роста. В свою очередь, именно фотосинтезирующим организмам мы обязаны появлением и сохранением пригодной для дыхания атмосферы.

Фотосинтезирующие организмы принадлежат разряду автотрофных, использующих для питания непосредственно неорганическое вещество, преобразуемое ими в органическое. Остальные организмы, в том числе животные и человек, - гетеротрофные, неспособные синтезировать органическое вещество из неорганического. Для них, в свою очередь, автотрофы создают необходимую кормовую базу и являются источником физического существования. Таким образом, водоросли относятся к организмам, с одной стороны, обязанным своим существованием непосредственно Солнцу, с другой - являющимся основой всей остальной органической жизни на Земле.

В связи с этим необходимо рассмотреть ключевые количественные показатели - объём и прирост биомассы растений и водорослей. Биомасса Земли в целом оценивается в 1,3 трлн тонн, из которых на фитомассу (растения) приходится более 1,2 трлн тонн, или более 95 % всей земной биомассы (табл. 2).

Отметим, что если в категориях биомассы рассматривать человека и население Земли, то она при населении около 7 млрд человек составит величину порядка 300 млн тонн - примерно 1/3000 или 0,03 % от всей земной биомассы и около 1 % от всей зоомассы.

При этом ежегодный прирост биомассы составляет 17 % от общей её величины или около 220 млрд тонн, в том числе океанической биомассы - более 87 млрд тонн.

Наиболее высокие скорости размножения и, соответственно, прироста биомассы характерны для мельчайших организмов, к числу которых относится и большая часть водорослей. В частности, только биомасса фитопланктона (плавучих морских водорослей) в Мировом океане оценивается (в сыром весе) в 1,5 млрд тонн, а его годовой прирост - в 550 млрд тонн. Иными словами, за год масса водорослей способна вырасти в 350 раз. По некоторым оценкам, на водоросли приходится 2/3 всей биомассы Земли. Точные же подсчёты в данном случае вряд ли возможны.

С наибольшей скоростью размножаются мельчайшие одноклеточные водоросли или микроводоросли - промежутки времени между делениями клеток в благоприятных условиях могут сокращаться до 20 минут и даже меньше. В этом случае всего за сутки одна клетка теоретически может дать примерно 5 × 1021 потомков. При массе одной клетки около 665 фемтограмм (6,65 × 10–16 кг или 6,65 × 10–13 г) их общая масса в течение суток превысит 100 тонн, а величина, равная всей нынешней биомассе Земли, будет достигнута ещё 12 часов спустя. Даже в реальных, а не идеальных условиях высокая скорость размножения водорослей, покрывающих поверхности водоёмов, хорошо известна, а при выращивании в пруду микроводоросль спирулина (Spirulina), как показывает практика, удваивает свою биомассу каждые двапять дней.

Водоросли как пища и как топливо

Благодаря столь огромному потенциалу размножения - при этом за счёт почти исключительно солнечной энергии и воды, без потребления органических веществ! - микроводоросли ещё несколько десятилетий назад стали объектом пристального внимания и исследований возможности использования в качестве пищевого и энергетического продукта.

Перспектива культивирования водорослей с ежегодным сбором десятков и сотен тонн биомассы с 1 га водной поверхности - в разы и даже на порядки больше, чем урожайность любой известной сельскохозяйственной культуры, и без существенных затрат - не могла не выглядеть крайне заманчивой.

Первоначальным было пищевое использование водорослей, имеющее давнюю историю. В частности, известно, что ацтеки, инки, а также народы Центральной и Восточной Африки, живущие в районах озера Чад и Великой рифтовой долины, употребляли в пищу лепёшки из высушенной спирулины.

В связи с этим, начиная с 1960-х годов в мире появляется интерес к водорослям (большей частью, к спирулине), прежде всего как пище - и для животных, и для человека. Был также обнаружен ряд полезных свойств водорослей, связанных с укреплением иммунитета, профилактикой и лечением ряда заболеваний, повышением продуктивности домашнего скота и сельскохозяйственных культур.

Во второй половине 1970-х годов спирулина в виде порошка или капсул появилась на мировых продовольственных рынках, где она презентовалась в качестве нового естественного продукта - энергетической натуральной пищевой добавки с высоким содержанием белка, то есть «пищи будущего».

В США предприятия по выращиванию микроводорослей в искусственных прудах, работающие в экспериментальном режиме, были созданы в 1977 году. Первые пруды появились в пустынной местности в графстве Имперская долина (Imperial Valley) на юго-востоке штата Калифорния. Условия там благоприятны благодаря сочетанию тёплой и солнечной погоды с возможностью подачи воды из реки Колорадо.

Параллельно выращиванием водорослей занялась Япония, далее в процесс включились предприятия в Индии, Китае, Таиланде, Тайване и Мексике.

В течение 1980-х годов и первой половины 1990-х годов производство микроводорослей в мире выросло до 1000 тонн. К концу 2000-х годов мировые объёмы производства микроводорослей, включая спирулину, хлореллу (chlorella), дуналиеллу (dunaliella), хематококкус (haematoccocus), достигли 10 тыс. тонн в сухом весе.

Почти в это же время, в 1980–1990-е годы, в СССР и России начали исследование и культивирование спирулины в пищевых целях, для использования в качестве биодобавок, как в пищу человеку, так и в корм для скота и птицы.

В этих работах активное участие принимали также и сотрудники Научно-исследовательской лаборатории возобновляемых источников энергии (НИЛВИЭ) географического факультета МГУ имени М. В. Ломоносова. Был установлен положительный эффект использования спирулины, в частности, в качестве пищевых добавок для птицы. В настоящее время в России существуют отдельные небольшие производства спирулины.

Что касается возможностей непосредственно энергетического использования водорослей - для получения биотоплива, то активные исследования в этом направлении начались также в 1960–1970-е годы. Лидерами в этих изысканиях стали, в частности, Французский институт нефти (Institut francais du petrole, IFP) и Национальная лаборатория возобновляемой энергии (National Renewable Energy Laboratory, NREL) Министерства энергетики США (Department of Energy, DoE).

NREL в 1978 году начала программу исследования возможностей получения топлива из микроводорослей Aquatic Species Program (буквально - Программа водных видов или водной флоры). Она была свёрнута к 1996 году, когда обнаружилось, что биотопливо из водорослей будет слишком дорогим по сравнению с ископаемыми углеводородами, однако в 2010 году было объявлено о возобновлении исследований в связи с нестабильностью цен на нефть и ростом требований к энергетической безопасности, экологической чистоте и снижению эмиссии парниковых газов.

В последние несколько лет биотопливо из водорослей получают и используют в экспериментальном режиме.

Параллельно исследования в этом направлении проходили в СССР, в том числе в НИЛВИЭ. В частности, в 1989–2002 годах лаборатория проводила исследования биопродуктивности и возможностей использования микроводорослей в качестве источника энергии, для получения биогаза и жидкого биотоплива, на базе экспериментального полигона Морского гидрофизического института АН УССР на южном берегу Крыму у посёлка Кацивели. Сотрудниками лаборатории была разработана и сконструирована система «Биосоляр», предназначенная для выращивания микроводорослей - фотосинтезирующие блоки или биогенераторы, с размещением в море и на суше, общей площадью несколько сотен квадратных метров.

В качестве объекта эксперимента была выбрана микроводоросль спирулина платенсис (Spirulina platensis), также называемая артоспира (Arthospira platensis). Одной из особенностей эксперимента была постепенная адаптация вида (в естественных условиях спирулина живёт в пресноводных субтропических и тропических водоёмах) к морской воде Чёрного моря. Опыты показали достаточно высокую продуктивность - годовой выход биомассы с каждого блока водорослевой плантации площадью 70 м2 достигал одной тонны. Экстраполируя - это более 140 тонн с 1 га, хотя достижение такого результата на больших площадях в российских условиях - отдельная задача.

Кроме того, исходное сырьё для получения биотоплива - липиды (жиры), содержание которых в разных видах различно. Спирулина обладает высокой долей белка - около 60 % сухой массы, что в числе прочего делает её ценным пищевым продуктом. В то же время содержание липидов - всего 7 %. Для сравнения, в семенах рапса и подсолнечника на липиды приходится 30–60 % массы, в семенах сои и кукурузы - 15–25 % и выше, в плодах масличной пальмы - 45–70 %. Именно эти культуры в настоящее время используются в качестве основного сырья для производства биотоплива. Поэтому идёт работа с микроводорослями, имеющими более высокое содержание липидов, пока носящая и в нашей стране (включая НИЛВИЭ), и в мире главным образом экспериментальный характер.

Водоросли как источник энергии – преимущества и недостатки

Итак, микроводоросли очень высокопродуктивны. Урожай с одного гектара теоретически может ежемесячно достигать тонн и даже десятков тонн в сухом весе, что в разы и даже на порядки выше, чем у традиционных сельскохозяйственных культур. При этом содержание липидов у ряда видов, таких как ботриококкус брауни (Botryococcus braunii), дуналиелла (Dunaliella), наннохлорис (Nannochloris), стихококкус (Stichococcus) в оптимальных условиях может достигать 80 %. Таким образом, теоретически возможный выход биотоплива в десятки и даже сотни раз выше, чем у используемых в настоящее время масличных культур (табл. 3).

При этом можно избежать конфликта с продовольственно-ориентированным использованием сельскохозяйственных земель. Плантации микроводорослей могут располагаться в естественных и искусственных водоёмах, на неудобных и неиспользуемых землях и морских акваториях, при этом занимая существенно меньшие площади.

Наконец, выращивание традиционных сельскохозяйственных культур на суше сопряжено с большим объёмом выбросов парниковых газов и других загрязняющих веществ. На фоне этого культивирование водорослей выглядит экологически абсолютно безопасным, более того, увеличивающим поглощение углекислого газа и выделение кислорода в атмосферу, что создаёт двойной положительный эффект - получение пищи и топлива, сопровождающееся не загрязнением, а с очищением среды. Проблема, как обычно, состоит в том, что реальные условия, как правило, далеки от оптимальных и теоретически возможных.

В рамках упоминавшейся выше программы ASP в США микроводоросли с большим содержанием липидов культивировались в открытых прудах в штате НьюМексико (юго-запад страны). Средняя продуктивность составляла 20 г/м2 в сутки (что соответствует 73 тонн с одного гектара в год), а в отдельные периоды - до 70 г/м2 в сутки.

Тем не менее, выяснилось, что невозможно в течение длительного времени поддерживать монокультуру микроводорослей в открытой системе, где неизбежно присутствуют и другие организмы. Кроме того, высокая продуктивность водорослей возможна при достаточно большой подкормке азотом, в отсутствие его она падает. В данном случае видно сходство с традиционными сельхозкультурами, также требующими азотных удобрений. В то же время при отсутствии азота содержание жиров в клетках водорослей выше. Итак, задача одновременного роста биопродуктивности и содержания липидов, обусловливающих энергоэффективность культуры, оказывается неразрешимой, и требуется поиск оптимального соотношения того и другого.

Японские исследователи из Научноисследовательского института инновационных технологий Земли (Research Institute of Innovative Technology for the Earth (RITE)), работавшие над этой же задачей в 1991–1999 годы, пришли к сходным результатам.

В 1997–2001 годах крупный исследовательский проект в этом же направлении осуществлялся на Гавайских островах, с микроводорослью хематококкус плювиалис (Haematococcus pluvialis), которую на первой стадии выращивали в закрытых фотобиореакторах, на второй - помещали в условия открытых водоёмов. Средняя продуктивность биомассы культивируемой водоросли составила 38 тонн с 1 га, максимальная превышала 90 тонн, выход биотоплива, соответственно, был 11,4–27,5 тонн с 1 га, что в несколько раз выше, чем у самых продуктивных масличных культур на суше.

В то же время, при выращивании в открытых условиях и биопродуктивность, и содержание липидов оказываются существенно ниже, а выращивание в закрытом биореакторе ведёт к существенно более высоким затратам.

В переводе на энергетический эквивалент получается, что для получения 1 л биодизеля из микроводорослей требуются энергозатраты, эквивалентные 0,56– 0,81 л топлива (в среднем около 0,7 л), включающие электроэнергию, питательные вещества и другое. В данном случае, помимо экономической составляющей, присутствует и экологическая - поскольку энергия, идущая на выращивание водорослей, добывается уже из невозобновляемых источников и экологически безопасной не является, то есть экологический эффект производства биодизеля в значительной степени обесценивается. Кроме того, существует отрицательный экологический эффект, связанный с азотной подкормкой и водопотреблением плантаций водорослей, то есть такой же, как и в традиционном сельскохозяйственном производстве. Кроме того, речь идёт о затратах без учёта инвестиций, оплаты труда, других издержек, связанных, в частности, с транспортировкой топлива.

Расчёты затрат на получение биодизеля из микроводорослей дают существенно различающиеся результаты, в очень высокой степени зависящие от вида и способа производства водоросли, природных условий и других факторов. В частности, по расчётам участников программы ASP, стоимость 1 л «водорослевого» биодизеля составила 26–86 центов ($ 39–127 за баррель), в гавайском проекте - около 40 центов ($ 56 за баррель), а исследователи из Британской Колумбии (Канада) дают существенно более высокие цифры - от $ 2,5 до $ 7 за 1 л.

По нашим расчётам, инвестиционные затраты на обустройство 1 га водорослевых плантаций в открытых условиях, включая монтаж культиваторов, оборудование для приготовления питания, перемешивания, сушки и фильтрации биомассы и другое, составят около $ 50 тыс.

Операционные затраты в крайне высокой степени зависят от местных условий, начиная от климата и заканчивая уровнем оплаты труда. Их можно оценить в $ 50–100 тыс. в год, но в условиях России они могут быть в несколько раз выше, в частности, из-за существенно большего по сравнению с субтропиками и тропиками расхода электроэнергии и короткого вегетационного периода при выращивании в открытых условиях.

Это вполне приемлемые условия при выращивании водорослей в качестве пищевых и лекарственных добавок, но как источник топлива они оказываются слишком дорогими.

При данных затратах, даже в случае сбора с 1 га 30 тонн биомассы ежегодно, каждая тонна будет обходиться в $ 1600– 3200 ($ 1,6–3,2 за 1 кг), даже без учёта первоначальных инвестиций и затрат на получение собственно биотоплива. Это близко к цифрам, приводимым канадскими исследователями.

Перспективы водорослевой энергетики

Интерес к водорослям в качестве источника биотоплива закономерен при ценах нефти в $ 100 за баррель и выше, как было во второй половине 2000-х годов. В настоящее время ситуация далеко не столь благоприятна, и вряд ли можно предсказать, изменится ли она в лучшую для возобновляемой энергетики сторону в обозримом будущем.

В настоящее время идёт и будет продолжаться поиск путей снижения затрат на производство биоэнергии из водорослей. Помимо прочего, он включает поиск, отбор и выведение культур водорослей с повышенным содержанием липидов, более продуктивных и жизнестойких.

В качестве же пищевого продукта (что тоже можно считать источником энергии) водоросли уже используются и имеют очевидные перспективы. Вероятно, как и в случае с торфом, в дальнейшем целесообразно комплексное использование выращиваемых водорослей с созданием целого спектра пищевых, лекарственных, энергетических продуктов на выходе. Для России это также могло бы стать одним из направлений среднеи долгосрочного инновационного роста и создания высокотехнологичной экономики на отечественной интеллектуальной и производственной базе. опубликовано

Компания Sustainable Green Technologies (SGT) занимается разработками для замены топлива, использование которого приводит к выбросам в атмосферу парникового газа, на экономичный и экологически чистый процесс. Он будет объединять способы переработки отходов производства водорослей для производства масел в целях получения топлива и другой ценной продукции.

Водоросли, производство масла и технология SGT LipiTrigger™

Хотя водоросли являются высокоэффективными преобразователями солнечной энергии в возобновляемую биомассу, большинство известных ученым водорослей запасает солнечную энергию в виде сахаров, например, сахарозы или крахмала, а не в виде необходимых масел (жиров или липидов), т.е. триацилглицеридов или фосфолипидов. При наличии света, углекислого газа и некоторых микроэлементов, большинство водорослей запасает в виде жиров всего около 15-20% от своего сухого веса. Только при определенных условиях водоросли способны переключаться на процесс известный как “липидный триггер” и запасать внутри своих клеток продукты фотосинтеза в виде масел – более ценной формы, по сравнению с сахарами.

LipiTrigger ™ это запатентованный метод компании. Ученые Sustainable Green Technologies Inc нашли простой и эффективный способ заставить водоросли без нарушения роста синтезировать больше масел (с 15 процентов до более чем 50 процентов сухого веса). Если водоросли смогут синтезировать больше масел и достичь высоких темпов роста, чем культуры масличных растений, то это позволит производить больше биотоплива и приведет к снижению цен.

Почему эко-топливо?

Запасы ископаемых видов топлива, таких как уголь, нефть и природный газ, являются невозобновляемыми источниками энергии и постепенно истощаются. Использование ископаемых видов топлива в двигателях внутреннего сгорания или газовых турбинах приводит к выбрасыванию в атмосферу парниковых газов и других экологически вредных компонентов. Мир в настоящее время потребляет около 30 млрд баррелей (или 1,26 триллионов галлонов) нефти в год или 82 млн. баррелей (или 3440 миллионов литров) нефти ежедневно. Эксперты предупреждают, что в ближайшее время добыча нефти не будет поспевать за ростом мирового спроса.

Зеленые водоросли просты в содержании, быстро растут и представлены множеством видов, использующих энергию солнечного света для осуществления фотосинтеза. Фотосинтез – биологический процесс, который производит биомассу (сахара или липиды), кислород и высокоэнергитические молекулы АТФ (аденозинтрифосфорной кислоты) из углекислого газа (CO2) и воды. Всю биомассу, будь то сахара или жиры, можно превратить в биотопливо, чаще всего в биоэтанол и биодизельное топливо. Кроме того, поскольку водоросли потребляют CO2 в процессе фотосинтеза, они являются идеальным, дешевым и экологически чистым способом эффективного удаления этого газа из атмосферы.

Зеленые водоросли являются родственниками других зеленых растений, в которых также осуществляется процесс фотосинтеза. Они относятся к самым примитивным формам растительной жизни и процесс фотосинтеза в зеленых водорослях протекает также, как и в остальных растениях. Так как многие зеленые водоросли являются небольшими организмами и имеют простую клеточную структуру, они являются более эффективными преобразователями солнечного света, чем высшие растения и показывают очень быстрый рост. Кроме того, поскольку водоросли растут в водной среде они имеют эффективный доступ к основным ингредиентам для фотосинтеза – воде и углекислому газу.

Что такое водорослевые масла?

Зеленые водоросли являются метаболически универсальными и производят важные для возобновляемой биомассы соединения непосредственно из солнечного света. Они могут синтезировать целлюлозу, полимер глюкозы, как часть собственных клеточных стенок, накапливают крахмал в качестве запасного питательного вещества и, что более важно, запасают значительные количества липидов и жирных кислот в качестве накопителей энергии. Жиры, производимые водорослями, химически очень похожи на продукт масличных культур и запасаются в виде триацилглицеридов.

Что такое триацилглицериды (ТАГ)?

ТАГ в водорослях – это химическая основа будущей экономики экотоплива. По своей химической природе ТАГ (или триацилглицериды) представляют собой молекулы, состоящие из трех длинных цепочек жирных кислот, соединенных с одной молекулой глицерина. ТАГ (жиры и липиды) в присутствии простых спиртов и катализатора, могут быть преобразованы в сложные эфиры жирных кислот (биодизель) в процессе, называемом переэтерификацией. Она выполняется либо химически, с помощью щелочных гидроксидов, или биохимически, с помощью ферментов, называемых липазами. Поскольку физико-химические свойства биодизеля очень близки к нефтяному дизельному топливу, масло водорослей представляет собой очень привлекательный альтернативный источник для производства биодизеля. Другим важным преимуществом является то, что оно не конкурирует с продовольственными рынками.

Как быстро растут водоросли?

Высокая эффективность фотосинтеза у водорослей обусловлена их малыми размерами. Это приводит к увеличению производства биомассы по сравнению с сельскохозяйственными культурами, такими как пальмовое масло, рапс, соя и кукуруза. Они содержат гораздо больше масел в сухом весе, чем используемые в настоящее время сельскохозяйственные растения. У некоторых водорослей сухой вес более чем на 50% состоит из извлекаемых масел, что в два с лишним раза превосходит содержание масла в масличных пальмах.

Дорого ли выращивать водоросли?

Водоросли имеют относительно простые требования для произрастания и они хорошо себя чувствуют в бедной по минеральному составу среде. Водорослям нужна только вода, солнечный свет и углекислый газ, и значительно меньше азота, чем сельскохозяйственным растениям. Метаболически они очень универсальны. Некоторые водоросли могут расти не только в фототрофных условиях (т. е. в присутствии света и углекислого газа в качестве источника углерода), но и при гетеротрофных условиях (то есть при отсутствии света, но при наличии глюкозы и других органических молекул в качестве сырья). Гетеротрофное выращивание водорослей с использованием сахара как источника углерода, приводит к значительно большему содержанию масел в водорослях по сравнению с контролем – водорослями, выращенными в фототрофных условиях. Однако, использование глюкозы (сахаров) для гетеротрофного роста водорослей и добычи масла является дорогостоящим и конкурирует с рынком продуктов питания. Это затрудняет экономически успешное использование способа.

Какие затраты связаны с выращиванием водорослей?

Пока за солнечный свет не приходится платить и его предостаточно, 80% от общих затрат на выращивание водорослей включают в себя стоимость сырья и питательных веществ. Для того, чтобы способность водорослей производить масла стала коммерчески привлекательной, затраты на сырье и удобрения для выращивания должны быть снижены. Компания SGT разработала и запатентовала дешевый способ использования водорослями собственных продуктов фотосинтеза для достижения значительной биомассы и производства масел.

Реальная альтернатива?

В последние годы возрастающее глобальное производство биодизеля из сельскохозяйственных культур и растительного масла стало более дорогостоящим, что частично связанно с ростом цен на удобрения и транспорт. Производство масел из зеленых водорослей с использованием недорогих отходов – очень привлекательная альтернатива для биотоплива следующего поколения. Очевидным преимуществом использования масла зеленых водорослей вместо масла, полученного из продовольственных культур, является то, что оно не конкурирует с продуктами питания и не влияет на продовольственные цены.

Являются ли водорослевые фермы решением?

В 1980 году научно-исследовательские программы Департамента Энергетики и других лабораторий были сосредоточены на создании крупных ферм водорослей в самых солнечных регионах США.

Несколько ферм водорослей, расположенных в открытых мелких водоемах, испытывались в США, используя в качестве сырья для водорослей выбросы углекислого газа. Однако, кольцеобразные пруды с водорослями имели несколько недостатков.

1. Ограниченное производство биомассы из-за небольшой глубины пруда. Пруды этого типа мелкие, для того чтобы водоросли получали достаточное количество солнечного света.

2. Высокая возможность заселения прудов другими формами жизни. Открытая система прудов склонна к заселению другими формами жизни, которые, в конечном счете, начинают конкурировать с водорослями за важные питательные вещества, таким образом снижая желаемое производство биомассы.

3. Зависимость от местных источников углекислого газа для обеспечения высокого производства биомассы. Ограниченное количество подходящих источников с большими выбросами углекислого газа, в идеале – электростанций, работающих на ископаемом топливе.

4. Сложности в разведении лабораторных организмов в открытых прудах

Почему именно технология производства масла из водорослей

Компания SGT разрабатывает новые технологии для добычи масел из зеленых водорослей. Они сосредоточены вокруг запатентованных процессов, которые позволяют компании добиться высокого и устойчивого роста биомассы водорослей с высоким процентом содержания масел. Существуют четыре основные причины почему должна быть разработана технология для добычи масел из зеленых водорослей.

  1. Энергобезопасность: разнообразит источники энергии.
  2. Занятость: создание рабочих мест для “зеленых воротничков”
  3. Окружающая среда: переработка углекислого газа и защита климата
  4. Социальная ответственность: реализация устойчивого производства биотоплива из непищевых источников

Возобновляемое сырье, о котором так много говорят в связи с истощением природных ресурсов, - это органические отходы промышленности, сельского и лесного хозяйства. Такая растительная биомасса дешевле газа, угля и нефти, из нее можно получать новые продукты, одновременно решая проблему утилизации отходов. T&P публикуют статью из сборника «Атлас технологий будущего» о том, как получить дизельное топливо из водорослей, электричество - из органических отходов, а биоразлагаемую упаковку - из свеклы.

Особенно перспективными являются технологии переработки возобновляемого сырья в биотопливо и электроэнергию, а также решения для производства биополимерной упаковки. Применение этих технологий позволяет осуществлять их рециклизацию, т. е. вторичную переработку в новом цикле создания продукции (в частности, субстратов в топливных элементах и биопластиков).

Потенциал использования названных технологий в России очень высок. Их разработка и внедрение приведут в среднесрочной перспективе к снижению зависимости экономики страны от энергоресурсов, зарубежных продуктов и технологий, созданию новых рынков.

Биодизель из микроводорослей

По мере роста численности населения и повышения мобильности людей увеличивается ежегодная потребность в авиационных и автомобильных перевозках. Удовлетворять усиливающийся спрос на моторные топлива возможно путем производства биодизеля нового поколения из зеленых микроводорослей - альтернативы биодизелям, получаемым на основе сельскохозяйственных культур.

Зеленые микроводоросли способны преобразовывать углекислый газ в органические соединения, оказывая при этом очищающий эффект на атмосферу и гидросферу. Такое биотопливо можно использовать в двигателях дизельного типа: оно очень близко по составу к традиционным моторным топливам - продуктам нефтепереработки. Очевидные преимущества микроводорослей - высокие скорость роста биомассы и содержание масел, удобство сбора и возможность выращивания непосредственно на предприятиях и вблизи электростанций - усиливают интерес ученых и многих крупных корпораций к их исследованию и промышленному использованию. В ряде стран начато серийное производство специальных биореакторов по выращиванию микроводорослей. Япония и США уже осуществили успешные испытания авиационного и автотранспорта, работающего исключительно на биодизеле из водорослей.

Эффекты

    Стимулирование развития транспортного сектора, повышение его экологичности и удовлетворение растущих потребностей в топливе.

    Снижение остроты конкуренции между техническими и продуктовыми посевными площадями (благодаря культивированию микроводорослей в фитореакторах, вихревых плавающих аквареакторах, открытых водоемах).

    Развитие регионов с неблагоприятными социально-экономическими условиями и снижение их зависимости от импортируемых топлив.

    Получение белков, антиоксидантов, пищевых красителей и других полезных продуктов из микроводорослей.

Оценки рынка

К 2030 г. мировое производство биотоплива увеличится до 150 млн тонн в нефтяном эквиваленте при ежегодных темпах роста на уровне 7–9%. Его доля достигнет 4–6% общего объема топлива, потребляемого транспортным сектором. Биотопливо из водорослей может заменить более 70 млрд литров ископаемого топлива ежегодно. Рынок биотоплива в России к 2020 г. может вырасти более чем в 1,5 раза - до отметки в 5 млн тонн в год. Вероятный срок максимального проявления тренда: 2025–2035 гг.

Драйверы и барьеры

    Экологическая политика развитых стран по минимизации масштабов загрязнения окружающей среды.

    Необходимость масштабных инвестиций для строительства заводов по производству биодизеля, настройки технологических процессов.

    Зависимость эффективности роста микроводорослей от интенсивности солнечного света (при выращивании в открытых водоемах).

Структурный анализ

Прогноз структуры мирового рынка биотоплива: 2022 (%)

Электроэнергия из органических отходов

Процессы утилизации и переработки отходов могут быть совмещены с производством практически значимых продуктов и даже электроэнергии. При помощи специальных устройств - микробных топливных элементов (МТЭ) - стало возможным производить электроэнергию из отходов напрямую, минуя стадии получения биогаза и его последующей переработки в электричество.

МТЭ представляют собой биоэлектрическую систему. Эффективность ее функционирования зависит от метаболической активности бактерий, которые расщепляют органические соединения (отходы) и передают электроны на электрическую цепь, встроенную в эту же систему. Наибольшей эффективности таких бактерий можно добиться, встраивая их в технологическую схему предприятий по очистке сточных вод, содержащих органические вещества, при расщеплении которых выделяется энергия.

Уже существуют лабораторные разработки, позволяющие использовать МТЭ для подзарядки аккумуляторов. По мере масштабирования и оптимизации технологических решений станет возможным обеспечивать электричеством и небольшие предприятия. Например, высокопроизводительные МТЭ, работающие на объемах от десятков до тысяч литров, обеспечат автономное питание очистных сооружений.

Эффекты

    Повышение экологичности производственных процессов и эффективности работы предприятий, снижение их зависимости от внешних источников электроэнергии, уменьшение себестоимости продукции и расходов на приобретение очистных технологий.

    Улучшение ситуации в энергодефицитных регионах, повышение их конкурентоспособности благодаря использованию МТЭ.

    Возможность автономного получения электроэнергии для неэнергоемких целей (например, в небольших фермерских хозяйствах).

Оценки рынка

70% - настолько вырастет к 2020 г. в России доля отходов, которые будут перерабатываться методами биотехнологий, по сравнению с 2012 г. В странах Европейского союза доля электроэнергии из биогаза составит около 8%. Вероятный срок максимального проявления тренда: 2020–2030 гг.

Драйверы и барьеры

    Увеличение объемов органических отходов и рост потребности в электроэнергии.

    Возможность работы биореакторов типа МТЭ на различных источниках энергии, включая сточные воды.

    Недостаточный уровень инвестиций, необходимых для встраивания МТЭ в технологические процессы, длительный период их окупаемости.

    Необходимость привязки биореакторов к местам образования отходов.

    Относительно низкая эффективность ныне функционирующих опытно-промышленных конструкций биореакторов типа МТЭ.

Структурный анализ

Исследования микробных электрохимических систем по типам: 2012 (%)

Биоразлагаемая полимерная упаковка

Повсеместное распространение упаковки из синтетических полимеров (пакетов, пленок, контейнеров) приводит к обострению проблемы загрязнения окружающей среды. Решить ее может переход к упаковочным материалам из биоразлагаемых полимеров, быстро утилизируемых и удобных в использовании.

В большинстве развитых стран в производстве упаковки намечается тенденция вытеснения тяжело и долго (до нескольких сотен лет) разлагающихся синтетических полимеров биоразлагаемыми (с периодом утилизации 2–3 месяца). Ежегодный объем их потребления только в Западной Европе составляет около 19 тыс. тонн, в Северной Америке - 16 тыс. тонн. Вместе с тем по ряду показателей биополимерные упаковочные материалы пока отстают от традиционных синтетических.

Технологии производства биополимерных материалов на основе полимолочной кислоты из растительных сахаров зерновых культур и сахарной свеклы позволяют производить упаковку с высокими потребительскими характеристиками: эластичную и прочную, устойчивую к влаге и агрессивным соединениям, непроницаемую для запахов, с высокими барьерными свойствами и при этом эффективно и быстро разлагающуюся. Совершенствование технологий направлено на снижение их материало- и энергоемкости.

Эффекты

    Формирование и развитие нишевых рынков - термоусадочных упаковок, влаго- и запахонепроницаемых пакетов, ударостойких контейнеров и др.

    Сокращение зависимости экономики от нефтегазового сырья.

    Снижение негативного воздействия на окружающую среду.

    Повышение экологической культуры населения, стимулирование приверженности к здоровому образу жизни благодаря массовому использованию качественной и удобной биоразлагаемой упаковки.

Оценки рынка

Рынок биополимеров, изготовленных на основе возобновляемых ресурсов, будет ежегодно расти на 8–10%. Наиболее интенсивно будет развиваться сегмент упаковочных материалов. Уже сейчас объем этого сегмента составляет 90% текущего объема мирового потребления биополимеров (205 млн тонн). Емкость рынка биополимеров в 2020 г. достигнет 4 млрд долларов. Вероятный срок максимального проявления тренда: 2025–2030 гг.

Драйверы и барьеры

    Ужесточение экологических требований к упаковочным материалам, повышение стоимости утилизации традиционной упаковки.

    Сокращение использования неразлагаемой упаковки в связи с необходимостью экономить невозобновляемые ресурсы нефти и газа в развитых странах.

    Недостаточно развитое экологическое воспитание у населения и бизнеса.

    Более высокая стоимость биоразлагаемых полимеров по сравнению с синтетическими.

Структурный анализ

Биополимерные материалы на рынке производства биопластика: 2010–2011 (%).

В рубрике «Открытое чтение» мы публикуем отрывки из книг в том виде, в котором их предоставляют издатели. Незначительные сокращения обозначены многоточием в квадратных скобках. Мнение автора может не совпадать с мнением редакции.