Электроснабжение литейного цеха. Схемы электроснабжения цеха (предприятия) Схема расположения электрооборудования в механическом цехе

Электрические сети служат для передачи и распределения электрической энергии к цеховым потребителям промышленных предприятий. Потребители энергии присоединяются через внутрицеховые подстанции и распределительные устройства при помощи защитных и пусковых аппаратов.

Электрические сети промышленных предприятий выполняются внутренними (цеховыми) и наружными. Наружные сети напряжения до 1 кВ имеют весьма ограниченное распространение, т. к. на современных промышленных предприятиях электропитание цеховых нагрузок производится от внутрицеховых или пристроенных трансформаторных подстанций.

Выбор электрических сетей радиальные схемы питания характеризуются тем, что от источника питания, например от трансформаторной подстанции, отходят линии, питающих непосредственно мощные электроприёмники или отдельные распределительные пункты, от которых самостоятельными линиями питаются более мелкие электроприёмники.

Радиальные схемы обеспечивают высокую надежность питания отдельных потребителей, т. к. аварии локализуются отключением автоматического выключателя поврежденной линии и не затрагивают другие линии.

Все потребители могут потерять питание только при повреждении на сборных шинах КТП, что мало вероятно. В следствии достаточно надёжной конструкции шкафов этих КТП.

Магистральные схемы питания находят широкое применение не только для питания многих электроприёмников одного технологического агрегата, но также большого числа сравнения мелких приёмников, не связанных единым технологическим процессом.

Магистральные схемы позволяют отказаться от применения громоздкого и дорогого распределительного устройства или щита. В этом случае возможно применение схемы блока трансформатор-магистраль, где в качестве питающей линии применяются токопроводы (шинопроводы), изготовляемые промышленностью. Магистральные схемы, выполненные шинопроводами, обеспечивают высокую надёжность, гибкость и универсальность цеховых сетей, что позволяет технологам перемещать оборудование внутри цеха без существенного монтажа электрических сетей.

В связи с равномерностью распределения потребителей внутри ремонтно-механического цеха, а также низкой стоимости и удобстве в эксплутации выбирается магистральная схема питания.

Расположение основного оборудования показано на схеме (рис.1).

Выполняем все виды студенческих работ

Курсовая

Расчёт электрической нагрузки производится совместно для рабочего и аварийного освещения. Исходные данные для расчёта приводятся в таблице 8. Таблица 8 - Параметры нагрузки освещения цеха. Активные сменные мощности рабочего, кВт, и аварийного, кВт, освещения определяются по формуле. Для = 0,83. Реактивные сменные мощности рабочего, кВАр, и аварийного, кВАр, освещения определяются по формуле (2)...

Электроснабжение механического цеха серийного производства (реферат, курсовая, диплом, контрольная)

  • Введение
  • 1. Общая часть
  • 1.3 Категория надёжности электроснабжения цеха
  • 2. Специальная часть
  • 2.3 Расчёт электрической нагрузки силового оборудования цеха
  • 2.8.4 Расчёт и выбор труб

Введение

Одной из наиболее актуальных задач в нашей стране является планомерное развитие ее хозяйственно-экономического комплекса. В условиях рыночной экономики главным фактором повышения эффективности национальной экономики становятся не отдельные достижения науки и техники, а высокий научный и технологический уровень всего производственного комплекса. Этот уровень определяется в первую очередь состоянием машиностроения как отрасли. В этом плане встают наиболее остро вопросы, связанные с улучшением, реорганизацией, развитием и модернизацией отрасли в целом и каждого предприятия в отдельности. В свою очередь любая модернизация промышленных машиностроительных предприятий, либо создание новых, ставит первоочередную задачу организации полноценного, экономичного и эффективного электроснабжения производственных мощностей, в том числе станкового парка.

В настоящем курсовом проекте рассматривается некоторый опыт проектирования электроснабжения отдельного участка механического цеха серийного производства, предназначенного для серийного выпуска продукции для завода тяжелого машиностроения.

Курсовой проект состоит из общей и специальной частей. В общей части рассматриваются основные данные помещения, оборудования и т. д. , необходимые для проведения расчетов. В специальной части приведены методы и непосредственно сами расчеты по организации электроснабжения участка цеха машиностроительного производства.

электроснабжение механический цех сеть

1. Общая часть

1.1 Характеристика помещений цеха

Механический цех серийного производства (МЦСП) разделен на следующие участки:

станочное отделение;

трансформаторная подстанция (ТП);

ремонтный участок;

бытовые помещения;

фрезерный участок;

заточной участок;

вентиляционная.

В помещении станочного отделения осуществляется основная производственная деятельность МЦСП, обработка заготовок и деталей. Станочное отделение является сухим помещением с нормальной средой, температура окружающей среды не превышает 30 °C, отсутствует химически активная среда, пожаро- и взрывоопасные вещества. Степень защиты оболочки электрооборудования IP 44.

Характеристики участков по условиям окружающей среды, технологическому назначению, наличию зон пожаро- и взрывоопасности приведены ниже в таблице 1.

Таблица 1 — Характеристики помещений цеха

Наименование участка

Технологическое назначение

Условия окружающей среды

Степень защиты оболочки

трансформация электроэнергии и передача её потребителям

нормальное

пожароопасное, класса П1

станочное отделение

сухое с нормальной средой

пожароопасное класса П-2а

фрезерный участок

обработка деталей из металла на станках

сухое с нормальной средой

пожароопасное класса П-2а

заточной участок

обработка деталей из металла на станках

сухое с нормальной средой

пожароопасное класса П-2а

ремонтный участок

обработка деталей из металла

сухое с нормальной средой

пожароопасное класса П-2а

хранение инструмента, приспособлений, материалов, готовой продукции

сухое с нормальной средой,

пожароопасное класса П-2а

вентиляционная

приток чистого и вытяжка загрязненного воздуха

нормальное

отсутствует

бытовые помещения

Решение орг. вопросов, отдых рабочих

сухое с нормальной средой,

пожароопасное, класса П-2а

1.2 Анализ электропотребителей цеха

В данном цехе используется электрооборудование, которое имеет следующие технологические назначения:

металлообрабатывающее оборудование (токарные, фрезерные станки и т. д.);

подъемно-транспортное оборудование (кран мостовой);

металлообрабатывающие станки (заточный, сверлильный, токарный, шлифовальный, фрезерный, болтонарезной, резьбонарезной станки);

деревообрабатывающие станки;

бытовые приборы (холодильник, электроплита);

сварочное оборудование (сварочный трансформатор, стол сварщика);

санитарно-техническое оборудование (вентиляторы);

Электропотребители подключены на трёхфазное напряжение 380 В (вентиляторы, станки), на однофазное напряжение 220 В (холодильник) и однофазное 380 В (сварочный трансформатор, электроплита). Остальное электрооборудование работает в длительном режиме.

Большинство электроприемников подключено на трехфазное напряжение 380 В (металлообрабатывающее, подъемно-транспортное оборудование), кроме однофазных электроприемников 220 В (наждачные, заточные станки, магнитный дефектоскоп) частотой 50Гц. Электропотребители цеха работают как в длительном режиме (металлообрабатывающее оборудование), так и в повторно-кратковременном (подъемно-транспортное оборудование).

Категорией надёжности электроснабжения называют способность электрической системы обеспечивать предприятие и отдельные объекты электроэнергией надлежащего качества без аварийных перерывов. В отношении обеспечения надежности электроснабжения электроприемники (ЭП) разделяются по правилам устройства электроустановок (ПУЭ) на три категории.

1 категория — к ней относятся электропотребители, перерыв в электроснабжении которых может вызвать угрозу жизни человека, повреждение дорогостоящего оборудования, массовый брак продукции и т. д. Потребители этой категории питаются от двух независимых источников электроэнергии. Перерыв электроснабжения допускается на время автоматического переключения с одного источника на другой.

2 категория — к этой категории относятся электропотребители, перерыв в электроснабжения которых может вызвать массовый недовыпуск продукции и простой рабочих, нарушение жизнедеятельности городских и сельских жителей. Питание потребителей осуществляется от двух независимых источников. При выходе из строя одного источника энергии переключение на другой источник энергии производит выездная оперативная бригада или оперативный персонал.

3 категория — к этой категории относятся электропотребители, которые не относятся к 1-й и 2-й категориям. Потребители этой категории питаются от одного источника электроэнергии, а перерыв их электроснабжения допускается на время не более суток.

Для электроприемников данной категории допустимы перерывы электроснабжения на время, необходимое для включения резервного питания дежурным персоналом или выездной оперативной бригадой. При наличии централизованного резерва допускается питание электроприемников II категории одним трансформатором, т. к перерыв в электроснабжения может вызвать массовый недовыпуск продукции и простой рабочих.

1.4 Исходные данные проектирования

Для выполнения электроснабжения цеха необходимо указать основные показателями цеха, параметры нагрузки цеха и технические параметры электропотребителей, которые заносятся в таблицы 2, 3 и 4 соответственно.

Таблица 2 — Основные показатели цеха

Наименование

Единицы измерения

Величина

Продолжение таблицы 2

2. Высота цеха, Н

3. Число использования максимума нагрузки, Т м

4. Мощность генератора, S Г

5. Индуктивное сопротивление генератора, х Г

о . е .

6. Длинна высоковольтной линии, l

7. Коэффициент мощности энергосистемы,

8. Сопротивление грунта,

9. Агрессивность грунта по отношению к стали

10. Время срабатывания защиты, t з

Таблица 3 — Параметры нагрузки цеха

Наименование

Единицы измерения

Величина

1. Установленная мощность силового оборудования;

2. Коэффициент использования

3. Коэффициент мощности

4. Эффективное число электроприёмников

5. Коэффициент максимума

7. Установленная мощность рабочего освещения

8. Коэффициент спроса

9. Коэффициент мощности

11. Установленная мощность аварийного освещения

12. Коэффициент спроса

Продолжение таблицы 2

13. Коэффициент мощности

Таблица 4 — Техническими параметрами электропотребителей

Наименование ЭП

№ по плану

Количество, шт

Мощность,

1. Карусельно-фрезерный станок

2. Станок заточный 1фазн.

3. Станок наждачный 1фазн.

4. Вентилятор приточный

5. Вентилятор вытяжной

6. Продольно-строгальный станок

7. Плоскошлифовальный станок

8. Продольно-фрезерный станок

9. Резьбонарезной станок

10. Токарно-револьверный станок

11. Полуавтомат фрезерный

21, 22, 23, 24, 25, 26,27, 28

12. Зубофрезерный станок

13. Полуавтомат зубофрезерный

14. Кран мостовой ПВ = 60 %

с osц =0,92

2. Специальная часть

2.1 Выбор способа и схемы электроснабжения распределительных сетей

Распределительной сетью называется сеть от распределительных шкафов до электропотребителей.

Распределительный шкаф (ШР) — это электротехническое устройство, служащие для приёма и распределения электроэнергии между электропотребителями, а также для их защиты от аварийных режимов. Распределительные шкафы устанавливаются, как правило, в центре нагрузок, а также в местах, не мешающих технологическому процессу и удобных для эксплуатации и ремонта. В данном цехе распределительные шкафы располагаются у стен.

Существует 3 схемы выполнения распределительных сетей.

Радиальная схема (рисунок 1) — это схема электроснабжения распределительных сетей, при которой электропотребитель получает питание по своей отдельной линии. Таким образом, при выходе из строя одной питающей линии остальные электропотребители продолжают получать питание. Однако при такой схеме используется большое количество пуско-защитной аппаратуры и кабельной продукции.

Рисунок 1 — Радиальная схема распределительной сети

Магистральная схема (рисунок 2) — это схема электроснабжения распределительных сетей, при которой несколько электропотребителей получают питание от одной линии.

Рисунок 2 — Магистральная схема распределительной сети

Смешанная схема (рисунок 3) — это схема электроснабжения распределительных сетей, при которой электропотребители получают электроэнергию как по радиальной, так и по магистральной схемам.

Рисунок 3 — Смешанная схема распределительной сети

Подключение электропотребителей к распределительным шкафам в механическом цехе производится как по радиальным, так и по смешанным схемам распределительных сетей.

В данном курсовом проекте используется радиальная схема распределительной сети.

Для подключения электропотребителей применяется как открытая (по конструкциям, в коробах), так и скрытая (в трубах подготовки пола) электропроводка. Способ прокладки электропроводки зависит от технологического процесса, условий окружающей среды, наличия пыли, химически активной среды, зон взраво- и пожароопасности. Например, электропроводка в венткамере выполняется открыто в коробе, чтобы защитить проводку от технологической пыли.

2.2 Расчёт электрической нагрузки распределительного шкафа методом упорядоченных диаграмм

Электрической нагрузкой для цеха является силовое оборудование и электроосвещение. Расчёт электрической нагрузки является важным элементом проектирования цехов, предприятий, участков. В зависимости от рассчитанной мощности выбирают число и мощность силовых трансформаторов, марку и сечение питающих линий высокого и низкого напряжения, а также тип пускозащитных аппаратов распределительных шкафов.

Приведён пример расчёта силового оборудования для распределительного шкафа (ШР) № 1 (по плану).

Исходные данные выбираются из таблицы 4 и заносятся в таблицу 5

По справочным данным находятся значения ки, cosц, tgц и заносятся в таблицу 5

Таблица 5 — Данные электропотребителей, подключённых к ШР1

№ по плану

Технологическое название

Полуавтомат фрезерный

Полуавтомат фрезерный

Полуавтомат фрезерный

Полуавтомат фрезерный

Полуавтомат фрезерный

Зубофрезерный станок

Полуавтомат зубофрезерный

Полуавтомат зубофрезерный

Схема распределительного шкафа представлена на рисунке 4.

Рисунок 4 — Принципиальная электрическая схема ШР1

Все ЭП относятся к одной технологической группе.

Определяется активная сменная мощность Рсм, кВт, по формуле Рсм=ku х? Рн1…8 (1)

Рсм=0,12×81,5 = 9,78 кВт Реактивная сменная мощность Qcм, кВАр, определяется по формуле

Qcм= Рсм х tgц (2)

Qcм= 9,78×2,30 =22,494 кВАр Суммарная сменная активная мощность Ш Р Рсм?, кВт определяется по формуле Рсм? = Рсм (3)

Рсм? = 9,78 кВт Суммарная сменная реактивная мощность ШР Qcм?, кВАр определяется по формуле

Qcм? = Qcм (4)

Qcм? = 22,494 кВАр Средневзвешенное значение функции tgц определяется по формуле

tgцсрв = Qcм? / Рсм? (5)

tgцсрв = 22,494/ 9,78 = 2,3

Полная среднесменная мощность ШР1 Scм?, кВА, определяется по формуле

Scм? =v 9,78 І + 22,494І = 24,53 кВА Средневзвешенное значение коэффициента мощности cosцсрв определяется по формуле

cosцсрв = Рсм? / Scм? (7)

cosцсрв = 9,78/24,53 = 0,399

Суммарная установленная мощность Э П Ру?, кВт, подключенных к ШР1, определяется по формуле Ру? =? Рн1+ Рн2+ Рн3+ Рн4+ Рн5+ Рн6+ Рн7+ Рн8 (8)

Ру? = 9,5+9,5+9,5+9,5+9,5+10+12+12 = 81,5 кВт Действительное число ЭП n 8 шт.

Средневзвешенное значение коэффициента использования определяется по формуле

kUсрв = Рсм? / Ру? (9)

kUсрв = 9,78/81,5 = 0,12

Эффективное число ЭП nэф, шт, определяется по формуле

6642, 25

nэф = 839,25 = 7,91

По данным значений nэф и kи срв находится значение коэффициента максимума kм

kм = f (nэф; kUсрв) (11)

kм = f (7,91; 0,12) = 2,59

Активная расчётная мощность ШР1 Рр кВт, определяется по формуле Рр = kм х Рсм? (12)

Рр =2,59×9,78 = 25,33 кВт Реактивная расчётная мощность ШР1 Qр, кВАр, определяется по формуле

Qр = 1,1 х Qcм?, т.к. nэф <10, nэф = 7,91 (13)

Qр = 1,1×22,494 = 24,7434 кВАр Полная реактивная мощность ШР1 Sр, кВа, определяется по формуле

Sр =v 25,33 І + 24,7434 І = 35,41 кВа Расчётный ток ШР1, А, определяется по формуле

Iр = 35,41/1,73×380 = 53,86 А Выбирается Э П с наибольшим пусковым током. Для ШР1 это — ЭП13 (Полуавтомат зубофрезерный). Находится его номинальный ток, А, по формуле

Iн1= 1,73×380×0,4×0,83 = 54,98 А Пусковой ток данного ЭП, А, определяется по формуле

где — коэффициент пуска (для).

In1 = 6×54,98 = 329,88 А Пиковый ток ШР1, А, рассчитывается по формуле

Iпик = 53,86 + 329,88 — 0,12×54,98 = 377,1424 А Данные расчётов заносятся в таблицу 6.

Таблица 6.

Активная сменная суммарная мощность силового оборудования, кВт, определяется по формуле

P см У сил = 710×0,3 = 213 кВт Определяется средневзвешенное значение математической функции силового оборудования соответствующее

при = 0.7 = 0,9 (20)

Реактивная сменная суммарная мощность силового оборудования, кВАр, определяется по формуле

Qcм? сил = 213×1,02 = 217,26 кВАр Активная расчётная мощность силового оборудования, кВт, определяется по формуле Рр сил = P см У сил х kм сил (12)

Рр сил = 213×1,3 = 276,9 кВт Реактивная расчётная мощность силового оборудования, кВАр, определяется по формуле

QР сил = 217,26 кВАр Полная расчётная мощность силового оборудования, кВА, определяется по формуле

Sp сил = v 276,9 І + 217,26 І = 351,96 кВА Расчётный ток силового оборудования, А, определяется по формуле

Iр = 351,96/1,73×380 = 535,38 А Для определения пикового тока силового оборудования находятся номинальный, А, и пусковой, А, токи электропотребителя с максимальным пусковым током по формулам (25), (26), (27) соответственно

Iн сил= 1,73×380×0,8×0,83 = 27,49 А

In1 = 6×27,49 = 164,94 А Пиковый ток силового оборудования, А, определяется по формуле (27)

Iпик сил = 535,38 + 164,94 — 0,12×27,49 = 697, 0212 А

2.4 Расчёт рабочего и аварийного освещения цеха

Расчёт электрической нагрузки производится совместно для рабочего и аварийного освещения. Исходные данные для расчёта приводятся в таблице 8

Таблица 8 — Параметры нагрузки освещения цеха

Активные сменные мощности рабочего, кВт, и аварийного, кВт, освещения определяются по формуле

Pсм РО = 0,9×54 = 48,6 кВт

Pсм АО = 1×11 = 11 кВт Средневзвешенные значения математической функции рабочего и аварийного освещения определяются по соответствующим значениям

Реактивные сменные мощности рабочего, кВАр, и аварийного, кВАр, освещения определяются по формуле (2)

Qcм РО = 48,6×0,48 = 23,33 кВАр

Qcм АО = 11×0 = 0 кВАр Активные расчётные мощности рабочего, кВт, и аварийного, кВт, освещения определяются по формуле

Pр РО = Pсм РО = 48,6 кВт

Pр АО = Pсм АО = 11 кВт Реактивные расчётные мощности рабочего, кВАр, и аварийного, кВАр, освещения определяются по формуле

Qр РО = Qcм РО (31)

Qр РО = Qcм РО = 23,33 кВАр

Qр АО = Qcм АО = 0 кВАр Полные расчётные мощности рабочего, кВА, и аварийного, кВА, освещения определяется по формуле (14)

Sp РО = v 48,6 І + 23,33 І = 53,9 кВА

Sp РО = v 11 І + 0 І = 11 кВА Расчётные токи рабочего, А, и аварийного, А, освещения определяются по формуле (15)

Iр РО = 1,73×0,38 = 81,67 А

Iр РО = 1,73×0,38 = 16,67 А Суммарная активная сменная мощность рабочего и аварийного освещения, кВт, определяются по формуле

Pсм? осв = 48,6 + 11 = 59,6 кВт Суммарная установленная мощность рабочего и аварийного освещения, кВт, определяются по формуле

Pу осв = 54 + 11 = 65 кВт Суммарная реактивная сменная мощность рабочего и аварийного освещения, кВАр, определяются по формуле

(34) Qсм? осв = 23,33 + 0 = 23,33 кВАр Активная расчётная мощность рабочего и аварийного освещения, кВт, определяются по формуле

Pр осв = 59,6 кВт Реактивная расчётная мощность рабочего и аварийного освещения, кВАр, определяются по формуле

Qр осв = 23,33 кВАр

2.5 Компенсация реактивной мощности

Работа машин и аппаратов переменного тока, основанная на принципе электромагнитной индукции, сопровождается процессом непрерывного изменения изменением магнитного потока в их магнитопроводах и полях рассеивания. Поэтому подводимый к ним поток мощности должен содержать не только активную составляющую Р, но и реактивную составляющую индуктивного характера Q, необходимую для создания магнитных полей, без которых процессы преобразования энергии, рода тока и напряжения невозможны.

Компенсация реактивной мощности может выполняться как естественным (уменьшение потребления реактивной мощности), так и искусственным (установка источников реактивной мощности) способами.

2.5.1 Расчёт электрической нагрузки цеха до компенсации

Расчёт полной электрической нагрузки цеха выполняется на основе данных расчёта электрической нагрузки на стороне низкого напряжения КТП и расчёта электрической нагрузки электроосвещения цеха, которые приведены в таблице 9

Таблица 9 — Параметры электрических нагрузок силового оборудования и электроосвещения цеха

Активная установленная мощность цеха, кВт, определяются по формуле

Pу цех = 710 + 54 = 764 кВт Активная сменная суммарная мощность цеха, кВт, определяются по формуле

(38) P см? цех = 196 +59,6 = 255,6 кВт Реактивная сменная суммарная мощность цеха, кВАр, определяются по формуле

Qсм? цех = 217,26 + 23,33 = 240,59 кВАр Полная сменная мощность цеха, кВА, определяются по формуле (6)

Scм цех =v 255,6 І + 240,6І = 351,03 кВА Средневзвешенное значение коэффициента мощности цеха определяются по формуле (7)

сosцсрв цех = 255,6/351,03 = 0,73

Средневзвешенное значение математической функции цеха определяются по формуле (5)

tgцсрв цех = 240,6/ 255,6 = 0,941

Активная расчётная мощность цеха, кВт, определяются по формуле

— коэффициент несовпадения максимума нагрузки для активной мощности.

P р цех = 0,95 х (276,9 + 59,6) = 319,7 кВт Реактивная расчётная мощность цеха, кВАр, определяется по формуле

Qр цех = 0,98 х (217,26 + 23,33) = 235,78 кВАр Полная расчётная мощность цеха, кВА, определяются по формуле (14)

Scм цех =v 319,7 І + 235,78І = 397,24 кВА Расчётный ток цеха, А, определяются по формуле (15)

Iр цех = 397,24/1,73×380 = 604,26 А Пиковый ток цеха, А, определяются по формуле (18)

Iпик цех = 604,26 + 329,88 — 0,12×54,98 = 930,54А

2.5.2 Расчёт и выбор комплектно-конденсаторной установки

Для выбора мощности и типа комплектно-конденсаторных установок используются данные расчёта электрической нагрузки силового оборудования и электроосвещения цеха, которые приведены в таблице 10

Таблица 10 — Параметры электрической нагрузки цеха

Средневзвешенное значение математической функции определяются по определяются по значению функции

Желаемое значение мощности ККУ, кВАр, определяются по формуле

QККУ жел = 255,6 х (0,941 — 0,36) = 148,5 кВАр Из справочных данных выбирается стандартное значение мощности ККУ, кВАр, при условии (43)

Выбирается значение мощности ККУ — 150 кВАр, т.к.150 кВАр‹ 240,59 кВАр.

Реактивная сменная суммарная мощность цеха после компенсации, кВАр, определяются по формуле

Qсм? цех ПК = 240,59 — 150 = 90,59 кВАр Полная сменная суммарная мощность цеха после компенсации, кВА, определяются по формуле (6)

Scм? цех ПК = v 255,6І + 90,59І = 271,18 кВА Определяется средневзвешенное значение коэффициента мощности цеха после компенсации по формуле

(45) сosцсрв ПК = 255,6/ 271,18 = 0,942

Сравниваются полученные значения со значением

0,942? 0,94 — верно Значит, выбирается ККУ с номинальной мощностью 150 кВАр, а её технические данные заносятся в таблицу 11

Таблица 11 — Технические параметры ККУ

Номинальный ток ККУ, А, определяется по формуле

Iн ККУ = 150/ (1,73×0,38) = 288,17 А Реактивная расчётная мощность цеха после компенсации, кВАр, определяется по формуле

Qсм? цех ПК = 235,78 — 150 = 85,78 кВАр Полная расчётная мощность цеха после компенсации, кВА, определяется по формуле (14)

Sр цех ПК = v 319,7І + 85,78І = 331,01 кВА Расчётный ток цеха после компенсации, А, определяются по формуле (15) А, по формуле (25)

Iр цех ПК = 331,01/ (1,73×0,38) = 503,51А Пиковый ток цеха после компенсации, А, определяются по формуле (18)

Iпик цех ПК = 503,51+329,88 — 0,12×54,98 =826,79 А

2.6 Расчёт и выбор числа и мощности силовых трансформаторов

В механическом цеху серийного производства присутствуют электропотребители первой и второй категорий надёжности электроснабжения.

К потребителю первой категории относится аварийное освещение цеха, а к потребителю второй категории — рабочее освещение цеха.

Исходные данные для выполнения расчёта и выбора числа и мощности силовых трансформаторов приводятся в таблице 12

Таблица 12 — Исходные данные для выполнения расчёта и выбора числа и мощности силовых трансформаторов

Средневзвешенное значение математической функции определяются по соответствующему значению

Реактивная сменная суммарная мощность цеха после компенсации, кВАр, определяются по формуле (21)

Qсм? цех ПК = 255,6×0,035 = 8,95 кВАр Полная сменная суммарная мощность цеха после компенсации, кВА, определяются по формуле (6)

S см? цех ПК = v 255,6І + 8,95І = 255,77 кВА Реактивная расчётная мощность цеха после компенсации, кВАр, определяются по формуле (22)

Qр цех ПК = 8,95 кВАр Полная расчётная мощность на стороне низкого напряжения, кВА, определяются по формуле (14)

S р цех ПК = v319,7І + 8,95І = 319,83 кВА Активные, кВт, и реактивные, кВАр, потери мощности в силовом трансформаторе и в высоковольтных линиях, кВт, определяются по формулам

Р Т = 0,02×319,83 = 6,4 кВт

Q Т = 0,1×319,83 = 31,98 кВАр

Р П = 0,03×319,83 = 9,6 кВт Полная расчётная мощность на стороне высокого напряжения, кВА, определяются по формуле

S р ВН = v (319,7 + 6,4 + 9,6) І + (8,95 + 31,98) І = 338,19 кВА Расчётная мощность силового трансформатора, кВА, с учётом коэффициента загрузки определяются по формуле

— допустимый коэффициент нагрузки, который, при преобладании потребителей III категории надёжности электроснабжения, равен 0,92

S Т1 = 338, 19/ 0,92 = 367,59 кВА Выбирается ближайшее большее стандартное значение мощности силового трансформатора, кВА

Определяется фактическое значение коэффициент нагрузки, и сравнивается со значением допустимого коэффициента нагрузки

в Тф = 338, 19/ 400 = 0,85

Сравнивается, при условии

0,92 > 0,85 — верно Значение коэффициента заполнения графика нагрузки, определяется по формуле

Число использования максимума нагрузки, ч, определяется по формуле

По данным значений и, а также по кривым кратностей допустимых нагрузок трансформаторов определяется коэффициент допустимой перегрузки

Расчётная мощность силового трансформатора, кВА, с учётом, определяется по формуле

SТ2 = 297,73 /1,02 = 297,73 кВА С учётом значений SТ1 и SТ2Выбирается стандартное значение мощности силового трансформатора и его технические данные заносятся в таблицу 13

Таблица 13 — Технические данные силового трансформатора

Потери, кВт

Габариты

140 010 801 900

Активная расчётная суммарная мощность потребителей I-й и II-й категорий надёжности электроснабжения, кВт, определяется по формуле

Реактивная расчётная суммарная мощность потребителей I-й и II-й категорий надёжности электроснабжения, кВАр, определяется по формуле

Полная расчётная мощность потребителей I-й и II-й категорий надёжности электроснабжения, кВА, определяется по формуле (14)

Процентное соотношение потребителей I-й и II-й категорий надёжности электроснабжения, %, определяется по формуле

Так как процентное соотношение потребителей I-й и II-й категорий надёжности электроснабжения не превышает 30%, то выбирается 1 силовой трансформатор с резервированием на низкой стороне от ближайшей цеховой трансформаторной подстанции.

2.7 Расчёт и выбор пускозащитной аппаратуры

Пускозащитной аппаратурой называются аппараты, предназначенные для коммутации и защиты электрических сетей от перегрузок и коротких замыканий. К таким аппаратам относятся автоматические выключатели, магнитные пускатели и предохранители.

Автоматические выключатели служат для автоматического размыкания электрических цепей при перегрузках и КЗ, при недопустимых снижениях напряжения, а также для нечастого включения цепей вручную.

Магнитные пускатели предназначены для пуска двигателей и защиты от перегрузок.

Предохранители предназначены для защиты цепей от режимов короткого замыкания и, изредка, от перегрузок.

Ниже приводится схема распределительного шкафа, с установленными в нём защитными аппаратами, питающих и распределительных сетей (Рисунок 5).

Рисунок 5 — Принципиальная электрическая схема ШР1

2.7.1 Выбор предохранителя FU1

Номинальный ток электропотребителя, А, определяется по формуле (16)

Пусковой ток электропотребителя, А, определяется по формуле (17)

Желаемое значение тока плавкой вставки предохранителя, установленного в ящике, А, определяется по формуле

где — коэффициент условий пуска: при тяжёлом пуске = 1,6; при лёгком = 2,5.

По значению выбирается большее стандартное значение тока плавкой вставки предохранителя, А, при условии

Выбирается предохранитель типа ПН — 2 — 150; .

По справочным данным определяется тип предохранителя, которые заносятся в таблицу 14

Таблица 14 — Технические данные ящика 1Я

2.7.2 Выбор типа предохранителей, установленных в распределительных шкафах

Выбора типов предохранителей, установленных в распределительном шкафу, рассматривается на примере предохранителя FU1.

Номинальный ток потребителя, А, который защищается предохранителем, определяется по формуле (25)

Пусковой ток потребителя, А, который защищается предохранителем, определяется по формуле (17)

Желаемое значение тока плавкой вставки предохранителя, А, определяется по формуле (63)

По значению выбирается большее стандартное значение тока плавкой вставки предохранителя, А, при условии (64)

Типы остальных предохранителей определяются аналогично.

Данные расчётов заносятся в таблицу 15

Таблица 15 — Технические данные предохранителей, установленных в ШР1

Продолжение таблицы 15

2.7.3 Выбор типов распределительных шкафов

Выбор распределительных шкафов производится по числу предохранителей, их номинальным токам, степени защиты. Технические данные шкафа ШР1 заносятся в таблицу 16

Таблица 16 — Технические данные распределительного шкафа ШР1

2.8 Расчет и выбор распределительных сетей

Распределительной сетью называется сеть от распределительных шкафов до электропотребителей. Электропотребители подключаются к ШР посредством проводов или кабелей, совокупность которых представляет собой электропроводку. Электропроводка может быть открытой (подвески, лотки, короба и т. д.), так и скрытой, при которой кабеля или провода прокладываются скрыто в кабельных каналах стен и потолков или в трубах подготовки пола.

2.8.1 Выбор сечений проводников по длительно-допустимому току

Для подключения электропотребителей к ШР1 используется скрытая прокладка кабелей в трубах подготовки пола при температуре 25єС. Проводка выполнена кабелем марки ВВГ с тремя фазными и одной нулевой жилами. Жилы кабеля выполнены из меди, изоляция и оболочка — из поливинилхлорида, защитный покров отсутствует. Выбор сечений кабелей рассматривается на примере одного из участков распределительной сети от ШР1 — участка 18Н-1.

Номинальный ток, подключаемого этим кабелем, потребителя, А, определяется по формуле (25)

По справочным данным определяется ближайшее большее значение длительно-допустимого тока, А, к номинальному току ЭП

— условие выполняется

В соответствии со значением, выбирается кабель ВВГ 31,5+11,5 мм².

Выбор сечений проводников остальных участков распределительной сети от ШР2 производится аналогичным способом.

Таблица 17 — Данные выбора сечений проводников распределительной сети

наименование участка

Марка, сечение, мм2

ВВГ 31,5+11,5

ВВГ 31,5+11,5

ВВГ 31,5+11,5

ВВГ 31,5+11,5

ВВГ 31,5+11,5

ВВГ 31,5+11,5

ВВГ 31,5+11,5

2.8.2 Проверка выбранных сечений проводников на соответствие защитным аппаратам

Распределительная сеть от ШР1 защищаются предохранителями, установленными в распределительном шкафу.

Для выполнения проверки необходимо знать следующие параметры:

коэффициент защиты, значение которого определяется по справочным данным для определённого защитного аппарата (для предохранителей, т.к. сеть не требует защиты от перегрузок);

ток срабатывания защитного аппарата, А — для предохранителей значение равно значению тока плавкой вставки, А;

значение длительно-допустимого тока, А.

Алгоритм проверки выбранных сечений проводников на соответствие защитным аппаратам приводится на примере одного из участков распределительной сети — участка 21-Н1.

Должно выполняться условие

— условие выполняется

Следовательно, выбранное сечение кабеля соответствует защитному аппарату. Проверка на соответствие других выбранных сечений проводников производится аналогично. Данные проверки заносятся в таблицу 17.

2.8.3 Проверка выбранных сечений проводников на допустимую потерю напряжения

Потерей напряжения называется алгебраическая разность между напряжением источника питания и напряжения в точке подключения электропотребителя. Сумма допустимых потерь напряжения питающей и распределительной сетей не должна превышать 3%.

Для определения потери напряжения данной распределительной сети определяется потеря напряжения на участке от распределительного шкафа № 1 до наиболее удалённого потребителя, то есть на участке 34-Н1.

Удельное сопротивление, определяется по формуле

— удельная проводимость, (для меди).

Удельное реактивное сопротивление, определяется по справочным данным ().

Расчётное значение потери напряжения, %, определяется по формуле

Полученное расчётное значение, %, сравнивается с допустимым значением для распределительных сетей, %, при условии

— условие выполняется

2.8.4 Расчёт и выбор труб

Для скрытой прокладки проводников в трубах подготовки пола применяются стальные (электросварные или водогазопроводные), поливинилхлоридные, полиэтиленовые и полипропиленовые трубы. Выбор материала труб зависит от условий окружающей среды и технологического процесса. Так, например, при прокладке проводки рекомендуется применять стальные трубы- во взрыво- и пожароопасных зонах помещений, ПВХ трубы — при прокладке по трудносгораемым основаниям, а полиэтиленовые и полипропиленовые трубы — только по несгораемым основаниям.

Для подключения электропотребителей к распределительному шкафу № 2 используется трубная прокладка кабелей марки ВВГ с применением поливинилхлоридных и стальных труб. Трубы прокладываются на глубине 0,3 м от уровня чистого пол. Стальные трубы применяются для выполнения выхода кабеля из пола, так как он нуждается в защите от механических повреждений. Подвод кабеля от стальной трубы к электропотребителю выполняется с помощью гибкого ввода.

Для выполнения трубной прокладки электропроводки необходимо составить специальный проектный документ «Трубозаготовительную ведомость», в котором указывается маркировка трассы, материал и диаметр труб, начало и конец трассы, участки трубных заготовок.

Таблица 18 — Трубозаготовительная ведомость

Участки трубной трассы

0,5−90?-6,1−120?-0,5

0,5−90?-1,6−90?-2,7−135?-7,5−135?2−120?-0,3

0,5−90?-3−135?-4,7

0,5−90?-2,6−120?-7,4

0,5−90?-1,6−90?-3,3−135?-5,1−135?-2,8−90?-0,4

0,5−90?-1,6−90?-3,4−135?-1,5

0,5−90?-9,4−120?-0,6

0,5−90?-9,4−120?-0,6

Затем выполняется сводка труб, с указанием материала трубы и диаметра по возрастающей: Труба поливинилхлоридная ТУ6 — 0,5.1646 — 83 Ш 20 мм = 71,6 м Труба стальная газосварная ГОСТ 10 704- — 76 Ш 20 мм = 7,7 м

2.9 Выбор месторасположения и типа комплектной трансформаторной подстанции

Комплектная трансформаторная подстанция (КТП — для внутренней и КТПН — для наружной установки) — подстанция, состоящая из трансформаторов и блоков комплектно распределительных устройств (КРУ или КРУН), поставляемых в собранном или полностью подготовленном для сборки виде.

Силовые трансформаторы подразделяются на сухие, масляные и с заполнением негорючим жидким диэлектриком.

По местонахождению на территории объекта различают следующие трансформаторные подстанции (ТП):

отдельно стоящие на расстоянии от зданий;

пристроенные, непосредственно примыкающие к основному зданию снаружи;

встроенные, находящиеся в отдельных помещениях внутри здания, но с выкаткой трансформаторов наружу;

внутрицеховые, расположенные внутри производственных зданий с

размещением электрооборудования непосредственно в производственном или

отдельном закрытом помещении с выкаткой электрооборудования в цех.

2.10. Выбор схемы электроснабжения и расчёт питающих сетей напряжением до 1 кВ

Питающей сетью называется сеть от распределительного устройства трансформаторной подстанции до распределительных шкафов, щитков освещения, мощных электропотребителей.

Питающая сеть цеха изображена на рисунке 9.

Рисунок 9 — Схема электроснабжения питающей сети

Данные для расчёта приводятся в таблице 19

Таблица 19 — Данные расчётных и пиковых токов питающей сети

2.10.1 Расчёт и выбор типов номинальных параметров автоматических выключателей

Автоматические выключатели применяются в сети электроснабжения для защиты их от аварийных режимов работы (перегрузок, КЗ и т. д.). Алгоритм выбора типа и номинальных параметров автоматических выключателей рассматривается на примере автомата.

Должно выполняться условие

Определяется желаемое значение тока срабатывания теплового элемента, А, по формуле

Определяется желаемое значение тока магнитного расцепителя, А, по формуле

Должно выполняться условие

где — стандартное значение тока срабатывания теплового элемента, значение которого определяется по справочным данным.

Стандартное значение тока магнитного расцепителя, А, определяется по формуле

где k — коэффициент отсечки, значение которого определяется по справочным данным.

Должно выполняться условие

По справочным данным определяются тип и номинальные параметры автоматического выключателя. Типы остальных автоматических выключателей определяются аналогично. Данные расчётов заносятся в таблицу 20.

Таблица 20 — Тип и номинальные параметры автоматических выключателей

Тип шкафа

Название автомата

обозначения

Тип выключателя

Тип нагрузхок

1.25-Iпик. А

Магистраль

линейный

линейный

линейный

линейный

линейный

линейный

линейный

2.10.2. Расчёт и выбор питающих сетей напряжением до 1 кВ

Питающие сети данного цеха выполняются кабелям марки АНРГ.

Пример выбор сечения кабеля питающей линии рассматривается на примере участка М1. Данный участок выполнен кабелем марки АНРГ, приложенным открыто в воздухе на кабельных подвесках при температуре 25єС. Выбор сечения производится по длительно-допустимому току. Данные для выбора приведены в таблице 19.

По справочным данным определяется ближайшее большее значение длительно-допустимого тока, А, при условии

— условие выполняется

В соответствии со значением, выбирается кабель АНРГ 3120+135 мм2.

Выбор сечений остальных кабелей питающей сети осуществляется подобным образом.

Выбранное сечение кабеля проверяется на соответствие защитному аппарату — автоматическому выключателю QF2 (по рисунку 9).

Должно выполняться условие

— условие выполняется

Следовательно, выбранное сечение кабеля соответствует защитному аппарату.

Определяется расчётное значение потери напряжения, %, по формуле (68)

— удельное сопротивление, значение которого определяется по формуле (67)

— удельное реактивное сопротивление, значение которого определяется по справочным данным (для кабельной линии до 1 кВ,).

Значение математической функции определяется по соответствующему значению

Полученное расчётное значение, %, сравнивается с допустимым значением для распределительных сетей, % при условии — условие выполняется

Следовательно, выбранное сечение кабеля удовлетворяет требованиям.

2.11 Расчёт выбор питающей сети высокого напряжения

Высоковольтный кабель предназначен для передачи электроэнергии от центральной распределительной подстанции (ЦРП) до трансформаторной подстанции (ТП). Выбор марки и сечения высоковольтного кабеля зависит от условий прокладки, условий окружающей среды и коррозии.

Для подключения комплектно-трансформаторной подстанции применяется высоковольтный кабель марки ААП2ЛШВУ, то есть кабель с алюминиевыми жилами, усовершенствованной бумажной изоляцией, алюминиевой оболочкой.

Бронь из плоской металлической. Кабель прокладывается в земле в траншее один при. Длина кабеля равна 0,9 км. Грунт агрессивен по отношению к стали.

Выбор сечения кабеля производится по длительно-допустимому току и экономической плотности тока.

Значение тока, протекающего по высокой стороне трансформатора, А, определяется по формуле

По справочным данным определяется ближайшее большее значение длительно-допустимого тока, А, к току

При этом должно выполняться условие

— условие выполняется

В соответствии со значением, выбирается кабель ААП2ЛШВУ 310 мм2 — 6кВ.

Определяется желаемое значение сечения кабеля по экономической плотности тока, мм2, по формуле

где — экономическая плотность, значение которой определяется по таблице

Из числа стандартных значений сечений кабелей выбирается ближайшее большее к значению, мм2, при условии

Следовательно, выбирается кабель м. ААП2ЛШВУ 335 мм2 — 6 кВ.

Из найденных значений сечений кабеля по длительно-допустимому току и экономической плотности тока выбирается большее

Следовательно, выбирается кабель ААП2ЛШВУ 335 мм2 — 6кВ.

Расчётное значение потери напряжения, %, определяется по формуле (68)

где определяется по формуле (67)

определяется по справочным данным (для кабельной линии 6 кВ и сечении кабеля 35 мм2).

Значение математической функции определяется по соответствующему значению

Полученное расчётное значение, %, сравнивается с допустимым значением для питающих сетей, % - условие выполняется

Следовательно, выбранное сечение кабеля удовлетворяет требованиям.

Затем определяется расчётное значение суммарной потере напряжения в сетях электроснабжения, %, по формуле

Полученное расчётное значение, %, сравнивается с допустимым суммарным значением для распределительных, питающих сетей и высоковольтных линий, % - верно.

2.12 Расчёт и выбор заземляющего устройства

Для заземления устройств можно использовать как естественные (водопроводные и другие металлические трубы, кроме трубопроводов с горючими веществами), так и искусственные заземлители (стальные стержни, забитые в грунт и соединенные между собой стальной полосой).

Для заземления электрооборудования КТП данного цеха применяются искусственные заземлители — стальные прутья, забитые в грунт и соединённые между собой горизонтальным заземлителем (полосовой сталью), проложенным на глубине 0,6 м. Исходные данные для расчёта приведены в таблице 21

Таблица 26 — исходные данные расчёта и выбора заземляющего устройства

Ток замыкания на землю, А, определяется по формуле

Определяется расчётное сопротивление заземляющего устройства, Ом

В соответствие с ПУЭ определяется величина сопротивления заземляющего устройства, Ом, общего для установок высокого и низкого напряжения

Так как заземлитель выполнен из круглой стали диаметром 20 мм и длиной 5 м каждый, то его сопротивление определяется по формуле

Так как длина вертикальных заземлителей l и расстояние между ними a равны 5 м, то коэффициент экранирования, определяется по формуле

Затем, определяется количество заземлителей п, шт, по формуле

Так как шт, то необходимо учитывать сопротивление горизонтального заземлителя

Определяется длина горизонтальной полосы, м, по формуле

Определяется необходимое сопротивление вертикальных заземлителей, Ом, по формуле

Определяется уточнённое количество вертикальных заземлителей, шт, по формуле

Список использованных источников

1. Барыбин Ю. Г. , Крупович В. Н. Справочник по проектированию электроснабжения. — М.: Энергия, 1990 г.

2. Барыбин Ю. Г. , Федоров Л. Е. Справочник по проектированию электрических сетей и электрооборудования. — М.: Энергия, 1990 г.

3. Конюхова Е. А. Электроснабжение объектов. — М.: Издательство «Мастерство»; Высшая школа, 2001 г.

4. Липкин Б. Ю. Электроснабжение промышленных предприятий. — М.: Высшая школа, 1990 г.

5. Постников Н. П. Электроснабжение промышленных предприятий. — М.: Стройиздат, 1990 г.

6. Правила устройства электроустановок (ПУЭ). — М.: Энергоатомиздат, 2002 г.

7. Сибикин Ю. Д. , Яшков В. А. Электроснабжение предприятий и установок нефтяной промышленности. — М.: ОАО «Издательство «Недра», 1997 г.

Факультет - ЭНИН Направление - Электротехника, электромеханика и электротехнологии. Исполнитель: Студент группы 7А96 Покояков Р.А. Проверил доцент: Томск - 2011. В реле РТ-40 (рис.1) использована одна из разновидностей электромагнитных систем, называемая системой с поперечным движением якоря. Магнитная система реле состоит из П-образного шихтованного магнитопровода 1 рис. 1,а и Г-образного якоря...

Контрольная

При анализе усилителей выделяют 2 режима: Усилительный каскад на биполярном транзисторе включенном по схеме с общим эмиттером Принцип работы. Режим покоя: источник питания создает постоянные токи базы эмиттера и коллектора. Постоянный ток базы замыкается в корпусе: +ЕК > R1 > Б > Э > RЭ > L > -ЕК > +ЕК Ток базы приоткрывает на половину транзистор, появляется постоянный ток коллектора или...

Если самоорганизация в простейшей форме может возникнуть уже в физико-химических системах, то вполне обоснованно предположить, что более сложноорганизованные системы могли появиться также в результате специфического, качественно отличного во многих отношениях, но родственного по характеру процесса самоорганизации. С этой точки зрения и возникновение жизни на Земле вряд ли можно рассматривать как...

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.Allbest.ru/

Размещено на http://www.Allbest.ru/

ВВЕДЕНИЕ

Современная энергетика характеризуется нарастающей централизацией производства и распределения электроэнергии. Для обеспечении подачи электроэнергии от энергосистем к промышленным объектам, установкам, устройствам и механизмам служат системы электроснабжения состоящие из сетей напряжением до 1000В и выше и трансформаторных, преобразовательных и распределительных подстанций. Для передачи электроэнергии на большие расстояния используются сверхдальние линии электропередач (ЛЭП) с высоким напряжением: 1150кВ переменного тока и 1500кВ постоянного тока. В современных многопролетных цехах промышленности широко используют комплектные трансформаторные подстанции (КТП), комплектные распределительные установки (КРУ), силовые и осветительные шинопроводы, аппараты коммутации, защиты, автоматики, контроля, учета и так далее. Это создает гибкую и надежную систему электроснабжения, в результате чего значительно уменьшаются расходы на электрообеспечение цеха.

Целью настоящего дипломного проекта является проектирование электроснабжения ремонтно-механического цеха с минимальными капитальными затратами, эксплуатационными издержками и обеспечение высокой безопасности. Основными потребителями электрической энергии являются промышленные предприятия. Они расходуют более половины всей энергии, вырабатываемой в нашей стране.

Актуальность данного дипломного проекта заключается в том, что ввод в действие новых предприятий, расширение существующих, рост энерговооруженности, широкое внедрение различных видов электротехнологий во всех отраслях производств выдвигают проблему их рационального электроснабжения.

В настоящее время электроэнергетика России является важнейшим жизнеобеспечивающей отраслью страны. В ее состав входит более 700 электростанций общей мощностью 215,6 МВт.

Система распределения столь большого количества электроэнергии на промышленных предприятиях должна обладать высокими техническими и экономическими показателями и базироваться на новейших достижениях современной техники. Поэтому электроснабжение промышленных предприятий должно основываться на использовании современного конкурентоспособного электротехнического оборудования.

Основываясь на аргументации об актуальности выбранной темы, можно определить целевую ориентацию работы.

Цель дипломного проекта: дать краткую характеристику ремонтно-механическому цеху по электрическим нагрузкам, режиму работы, роду тока, питающему напряжению и сделать расчет электрических нагрузок для выбора электрооборудования подстанции.

Ремонтно-механический цех (РМЦ) предназначен для ремонта и настройки электромеханического оборудования выбывающего из строя. Он является одним из цехов металлургического завода, выплавляющего и обрабатывающего металл. РМЦ имеет два участка, в которых установлено необходимое для ремонта электрооборудование: токарные, строгальные, фрезерные, сверлильные станки и др. В цехе предусмотрены помещения для трансформаторной подстанции (ТП), вентиляторной, инструментальной, складов, сварочных постов, администрации и пр. РМЦ получает ЭСН от главной понизительной подстанции (ГПП). Расстояние от ГПП до ТП - 3,3 км, а от энергосистемы (ЭСН) до ГПП - 14 км. Напряжение на ГПП - 10кВ. Количество смен - 2. Потребители цеха имеют 2 и 3 категорию надежности ЭСН.

1. ОБЩАЯ ЧАСТЬ

1.1 Краткая характеристика техноло гического процесса производства

Ремонтно-механический цех

Ремонтно-механический цех является структурным подразделением предприятия, возглавляется начальником цеха и подчиняется главному механику.

Ремонтно-механический цех выполняет работы по обеспечению нормального функционирования ремонтно-эксплуатационной службы, связанные с ремонтом, модернизацией оборудования и форм, изготовлением запасных частей, производимых в соответствии с утвержденными годовыми, месячными планами-графиками.

Начальник ремонтно-механического цеха назначается и увольняется директором.

На должность начальника ремонтно-механического цеха назначаются лица с высшим техническим образованием и стажем работы на инженерно-технических должностях в области ремонта оборудования не менее трех лет или средним специальным образованием и стажем работы на руководящих должностях по ремонту оборудования не менее пяти лет.

Начальник ремонтно-механического цеха в своей работе руководствуется приказами и инструкциями министерства, управления, приказами директора, распоряжениями главного инженера и главного механика, а также руководствами по ремонту и настоящим положением.

Начальник ремонтно-механического цеха:

осуществляет руководство производственно-хозяйственной деятельностью цеха по ремонту, модернизации оборудования и форм, изготовлению нестандартного оборудования и инструмента, а также изготовлению запасных частей и техническому обслуживанию оборудования и форм, зданий и сооружений ремонтно-механического цеха;

участвует в разработке текущих и перспективных планов ремонта оборудования и форм, зданий, сооружений, а также рабочих планов по отдельным службам, организует разработку и доведение до исполнителей заданий и графиков ремонта;

обеспечивает выполнение плановых заданий в установленные сроки, ритмичную работу цеха, повышение производительности труда ремонтных рабочих, снижение стоимости ремонта при высоком качестве ремонтных работ, эффективное использование основных и оборотных фондов, соблюдение правильного соотношения между ростом производительности труда и заработной платы;

проводит работу по внедрению научной организации труда, совершенствованию организации производства, его технологии, механизации и автоматизации производственных процессов, предупреждению брака, повышению качества продукции, использованию резервов повышения производительности труда и рентабельности производства, снижению трудоемкости и себестоимости продукции;

организует планирование, учет и составление отчетности о производственной деятельности, работу по развитию и укреплению хозяйственного расчета, улучшению нормирования труда, правильному применению форм и систем заработной платы и материального стимулирования, обобщению и распространению передовых методов и приемов труда, развитию рационализации и изобретательства;

обеспечивает технически правильную эксплуатацию оборудования и других основных средств и выполнение графиков их ремонта, безопасные и здоровые условия труда, а также своевременное представление работающим льгот по условиям труда;

совместно с общественными организациями организует социалистическое соревнование, проводит воспитательную работу в коллективе.

1.2 Характеристики потребителей электроэнергии, категории электроснабжения

Характеристики потребителей электроэнергии и определение категории электроснабжения. Электроснабжение объекта может осуществляться от собственной электростанции, энергетической системы при наличии собственной электростанции.

Требования, представляемые к надёжности электроснабжения от источников питания, определяются потребляемой мощностью объекта и его видом.

Приёмники электрической энергии в отношении обеспечения надёжности электроснабжения разделяются на несколько категорий. Первая категория - электроприёмники, перерыв электроснабжения которых может повлечь за собой опасность для жизни людей, значительный экономический ущерб, повреждение дорогостоящего оборудования, расстройство сложного технологического процесса, массовый брак продукции. Из состава электроприёмников первой категории выделяется особая группа (нулевая категория) электроприёмников, бесперебойная работа которых не обходима для безаварийного останова производства с целью предотвращения угрозы для жизни людей, взрывов, пожаров и повреждения дорогостоящего оборудования.

Вторая категория - электроприёмники, перерыв электроснабжения которых приводит к массовым недоотпускам продукции, массовым простоям рабочих, механизмов. Допустимый интервал продолжительности нарушения электроснабжения для электроприёмников второй категории не более 30 минут.

Третья категория - все остальные электроприёмники, не подходящие под определение первой и второй категорий. Электроприёмники первой категории должны обеспечиваться электроэнергией от двух независимых источников питания, при отключении одного из них переключение на резервный должно осуществляться автоматически. Согласно определению ПУЭ независимыми источниками питания являются такие, на которых сохраняется напряжение при исчезновении его на других источниках, питающих эти электроприёмники.

Согласно ПУЭ к независимым источникам могут быть отнесены две секции или системы шин одной или двух электростанций или подстанций при соблюдении следующих условий: - каждая эта секция или система шин питается от независимых источников. - секции шин не связаны между собой или же имеют связь, автоматически отключающуюся при нарушении нормальной работы одной из секций шин. Для электроснабжения электроприёмников особой группы должен предусматриваться дополнительный третий источник питания, мощность которого должна обеспечивать безаварийную остановку процесса.

Электроприёмники второй категории рекомендуется обеспечивать от двух независимых источников питания, переключение можно осуществлять не автоматически. Электроснабжение электроприёмников третьей категории может выполняться от одного источника при условии, что перерывы электроснабжения, необходимые для ремонта и замены поврежденного оборудования, не превышают одних суток. Электрооборудование ремонтно-механического цеха относится ко 2 и 3 категориям и могут питаться от одного источника, при условии, что перерывы электроснабжения не превышает одних суток. Выбор рода тока, напряжения и схемы внутреннего электроснабжения. Назначение электрических сетей. Электрические сети служат для передачи и распределения электрической энергии к цеховым потребителям промышленных предприятий.

Потребители энергии присоединяются через внутрицеховые подстанции и распределительные устройства при помощи защитных и пусковых аппаратов.

Электрические сети промышленных предприятий выполняются внутренними (цеховыми) и наружными. Наружные сети напряжения до 1кВ имеют весьма ограниченное распространение, т.к. на современных промышленных предприятиях электропитание цеховых нагрузок производится от внутрицеховых или пристроенных трансформаторных подстанций.

Выбор электрических сетей радиальные схемы питания характеризуются тем, что от источника питания, например от трансформаторной подстанции, отходят линии, питающих непосредственно мощные электроприёмники или отдельные распределительные пункты, от которых самостоятельными линиями питаются более мелкие электроприёмники.

Радиальные схемы обеспечивают высокую надежность питания отдельных потребителей, т.к. аварии локализуются отключением автоматического выключателя поврежденной линии и не затрагивают другие линии. Все потребители могут потерять питание только при повреждении на сборных шинах КТП, что маловероятно. Вследствие достаточно надёжной конструкции шкафов этих КТП. Магистральные схемы питания находят широкое применение не только для питания многих электроприёмников одного технологического агрегата, но также большого числа сравнения мелких приёмников, не связанных единым технологическим процессом.

Магистральные схемы позволяют отказаться от применения громоздкого и дорогого распределительного устройства или щита. В этом случае возможно применение схемы блока трансформатор-магистраль, где в качестве питающей линии применяются токопроводы (шинопроводы), изготовляемые промышленностью.

Магистральные схемы, выполненные шинопроводами, обеспечивают высокую надёжность, гибкость и универсальность цеховых сетей, что позволяет технологам перемещать оборудование внутри цеха без существенного монтажа электрических сетей. В связи с равномерностью распределения потребителей внутри ремонтно-механического цеха, а также низкой стоимости и удобстве в эксплуатации, выбирается магистральная схема питания.

1 .3 Выбор рода, напряжения

Трёхфазные сети выполнются трёхпроводными на напряжение свыше 1000В и четырёхпроводными - до 1000В. Нулевой провод в четырёхпроводной сети обеспечивает равенство фазных напряжений при неравномерной загрузке фаз от однофазных электроприёмников.

Трёхфазные сети на напряжение 380/220В (в числители - линейное, в знаменатели - фазное) позволяют питать от одного трансформатора трёх - и однофазные установки. Электрические сети выполняются в основном по системе трёхфазного переменного тока, что является наиболее целесообразным, поскольку при этом может производиться трансформация электроэнергии. При большом количестве однофазных электроприёмников от трёхфазных сетей осуществляются однофазные ответвления.

1. 4 Классификация помещений по взрыво - и пожарной безопасности

Предусматриваемые при проектировании зданий и установок противопожарные мероприятия зависят прежде всего от пожарной или взрывной опасности размещенных в них производств и отдельных помещений. Помещения и здания в целом делятся по степени пожаро- или взрывоопасности на пять категорий в соответствии с ОНТП-24.

· Категория А - это помещения, в которых применяются легковоспламеняющиеся жидкости с температурой вспышки паров 28 o С и ниже или горючие газы в таком количестве, что они могут образовать взрывоопасную смесь с воздухом, при взрыве которой создастся давление более 5 кПа (например, склады бензина).

· Категория Б - это помещения, в которых выделяются переходящие во взвешенное состояние горючие волокна или пыль, а также легковоспламеняющиеся жидкости с температурой вспышки паров более 28 o С в таком количестве, что образуемая ими с воздухом смесь при взрыве может создать давление более 5 кПа (цеха приготовления сенной муки, выбойные и размольные отделения мельниц и крупорушек, мазутное хозяйство электростанций и котельных).

· Категория В - это помещения, в которых обрабатывают или хранят твердые горючие вещества, в том числе выделяющие пыль или волокна, неспособные создавать взрывоопасные смеси с воздухом, а также горючие жидкости (лесопильные, столярные и комбикормовые цехи; цехи первичной сухой обработки льна, хлопка; кормокухни, зерноочистительные отделения мельниц; закрытые склады угля, склады топливно-смазочных материалов без бензина; электрические РУ или подстанции с трансформаторами).

· Категория Г - это помещения, в которых сжигают топливо, в том числе газ, или обрабатывают несгораемые вещества в горячем, раскаленном или расплавленном состоянии (котельные, кузницы, машинные залы дизельных электростанций).

· Категория Д - это помещения, в которых негорючие вещества находятся в практически холодном состоянии (насосные оросительные станции; теплицы, кроме отапливаемых газом, цехи по переработке овощей, молока, рыбы, мяса).

Категории производств по пожарной опасности в большой степени определяют требования к конструктивным и планировочным решениям зданий и сооружений, а также другим вопросам обеспечения пожаро- и взрывобезопасности. Они отвечают нормам технологического проектирования или специальным перечням, утверждаемым министерствами (ведомствами). Руководством при этом могут служить "Указания по определению категории производств по взрывной, взрывопожарной и пожарной опасности" (СН 463-74) и "Методика категорирования производств химической промышленности по взрывной, взрывопожарной и пожарной опасности".

Условия возникновения пожара в зданиях и сооружениях во многом определяются степенью их огнестойкости (способность здания или сооружения в целом сопротивляться разрушению при пожаре). Здания и сооружения по степени огнестойкости подразделяются на пять степеней (I, II, III, IV и V). Степень огнестойкости здания (сооружения) зависит от возгораемости и огнестойкости основных строительных конструкций и от распространения огня по этим конструкциям.

По возгораемости строительные конструкции подразделяются на несгораемые, трудносгораемые и сгораемые. Несгораемые конструкции выполнены из несгораемых материалов, трудносгораемые - из трудносгораемых или из сгораемых, защищенных от огня и высоких температур несгораемыми материалами (например, противопожарная дверь, выполненная из дерева и покрытая листовым асбестом и кровельной сталью).

Огнестойкость строительных конструкций характеризуется их пределом огнестойкости, под которым понимают время в часах, по истечении которого они теряют несущую или ограждающую способность, т. е. не могут выполнять свои обычные эксплуатационные функции.

Потеря несущей способности означает обрушение конструкции.

Потеря ограждающей способности - прогрев конструкции при пожаре до температур, превышение которых может вызвать самовоспламенение веществ, находящихся в смежных помещениях, или образование в конструкции сквозных трещин или отверстий, через которые могут проникать продукты горения в соседние помещения.

Пределы огнестойкости конструкций устанавливают опытным путем.

Для этого образец конструкции, выполненный в натуральную величину, помещают в специальную печь и одновременно воздействуют на нее с необходимой нагрузкой.

Время от начала испытания до появления одного из признаков потери несущей или ограждающей способности и считается пределом огнестойкости. Предельным прогревом конструкции является повышение температуры на необогреваемой поверхности в среднем больше чем на 140 o С или в какой-либо точке поверхности выше, чем на 180 o С по сравнению с температурой конструкции до испытания, или больше чем на 220 o С независимо от температуры конструкции до испытания.

Рисунок 1 - План расположения электрооборудования ремонтно-механического цеха

Наименьшим пределом огнестойкости обладают незащищенные металлические конструкции, а наибольшим - железобетонные.

Требуемая степень огнестойкости производственных зданий промышленных предприятий зависит от пожарной опасности размещаемых в них производств, площади этажа между противопожарными стенами и этажности здания. Требуемая степень огнестойкости должна соответствовать фактической степени огнестойкости, которая определяется по таблицам СНиП П-2-80,содержащим сведения о пределах огнестойкости строительных конструкций и пределах распространения по ним огня.

Например, основные части зданий I и II степени огнестойкости являются несгораемыми и различаются только пределами огнестойкости строительных конструкций. В зданиях I степени распространение огня по основным строительным конструкциям не допускается совсем, а в зданиях II степени максимальный предел распространения огня, составляющий 40 см, допускается только для внутренних несущих стен (перегородок). Основные части зданий V степени являются сгораемыми.

Пределы огнестойкости и распространения огня для них не нормируются.

2. СПЕЦИАЛЬНАЯ ЧАСТЬ

2 .1 Исходные данные для расчета

2. Токи короткого замыкания на шинах ГПП 10,5 кА.

3. Длина кабельной линии от ГПП до ТП 3,3 км.

5. Установленная мощность освещения 90 кВт.

6. Данные электроприемников цеха приведены в таблице 1.

Таблица 2.1

Данные электроприемников цеха

Ном. мощность, кВт

Станок токарно-карусельный

Станок токарный

Станок фрезерный

Станок сверлильный

Печь индукционная

Вентилятор

Сварочный выпрямитель

Мостовой кран при ПВ = 25%

2.2 Расчет электрических нагрузок

Расчет электрических нагрузок является первым и одним из ответственных этапов проектирования, т.к. на основании результатов такого расчета в дальнейшем производится выбор мощности компенсирующих устройств, силовых трансформаторов, преобразователей, электрооборудования подстанций, определяются сечения токоведущих частей (проводов, кабелей, шин), рассчитывается защита электроустановок и т.д. Ошибок при расчете не должно быть. Завышение расчетной мощности приведет к большим дополнительным затратам; занижение - к выводу из строя оборудования, ложным срабатываниям защиты и т.п. Правильное определение расчетных электрических нагрузок дает гарантию того, что оборудование будет работать экономично, надежно, а потери электроэнергии будут минимальными.

2 .2. 1 Расчет электрических нагрузок методом упорядоченных диаграмм

Этот метод позволяет определить расчетные электрические нагрузки с наименьшей погрешностью, поэтому является основным для расчета нагрузок. Номинальная мощность электроприемников без учета осветительной нагрузки (по данным табл. 2.1)

При наличии двигателей повторно-кратковременного режима работы их номинальная мощность приводится к длительному режиму

где P пасп - паспортная мощность (по заданию), кВт;

ПВ - продолжительность включения, в относительных единицах.

Общая номинальная мощность электроприемников цеха

Средние активная и реактивная мощности за максимально загруженную смену

где К и - коэффициент использования группы электроприемников одного режима работы;

P н - номинальная мощность электроприемников, кВт.

Выписываем из приложения 1.1 значения К и и cos в таблице 2.2

Таблица 2.2

Значения К и и cos

Наименования электроприемников

Кол-во. шт

Мощность, кВт

Станок токарно-карусельный

Станок токарный

Станок фрезерный

Станок сверлильный

Печь индукционная

Вентилятор

Сварочный выпрямитель

Мостовой кран

Значения tg ц определяются по формуле

Групповой коэффициент использования

Эффективное число электроприемников n э - это такое число однородных по режиму работы электроприемников одинаковой мощности, которое дает ту же величину расчетной нагрузки, что и группа электроприёмников, различных по режиму работы и мощности.

По диаграммам или табл. 2.13 определяем коэффициент максимума.

При к и = 0,4 и n э = 14коэффициент максимума к m = 1,32 согласно .

Расчетная мощность осветительной нагрузки

где Кс.о. - коэффициент спроса осветительной нагрузки;

Рн.о. - установленная мощность электрического освещения, кВт

Согласно Кс.о. = 0,85.

По заданию

Расчетная активная и реактивная нагрузки заданной группы электроприемников

2. 3 Выбор компенсирующих устройств

Если компенсирующие устройства не установлены, то вся расчётная мощность передаётся к электроприемникам от электрической станции

Размещено на http://www.Allbest.ru/

Размещено на http://www.Allbest.ru/

Рисунок 2 - Передача электроэнергии без применения КУ

Если к шинам подстанции или зажимам группы электроприемников подключить компенсирующие устройства общей мощностью Q ку, то от электростанции будет передаваться меньшая реактивная мощность, и следовательно меньшая полная мощность.

Размещено на http://www.Allbest.ru/

Размещено на http://www.Allbest.ru/

Рисунок 2.1 -электроэнергии с использованием КУ

С уменьшением передаваемой полной мощности от значения S р до S р " увеличивается коэффициент мощности cos.

На шинах подстанции коэффициент мощности должен находиться в пределах cos н = 0,92...0,95. Если расчетный коэффициент мощности cos р меньше нормативного cos н, необходимо установить компенсирующее устройство.

Мощность компенсирующих устройств:

tg р - соответствует расчетному коэффициенту мощности;

tg н - соответствует нормативному коэффициенту мощности.

При выборе мощности компенсирующих устройств должен быть предусмотрен 10-15% резерв для обеспечения допустимых отклонений напряжения в послеаварийных режимах.

В сетях низкого напряжения не рекомендуется дробить необходимую мощность конденсаторных батарей до величины менее 30 квар из-за увеличения удельных затрат на отключающую аппаратуру, измерительные приборы и прочее оборудование на один установленный киловольт-ампер батареи.

2. 3.1 Расчет компенсирующих устройств

Расчетный коэффициент мощности

Расчетный коэффициент мощности меньше нормативного, поэтому необходимо установить компенсирующие устройства.

Мощность компенсирующих устройств

Из приложения №2 выбираем для двух секций шин НН две батареи статических конденсаторов типа УКМ-0,4-20-180УЗ мощностью по 180 квар. каждая.

Передаваемая от электростанции реактивная мощность

Передаваемая от электростанции полная мощность

Проверка:

Принимаем к установке нерегулируемые батареи статических конденсаторов со схемой присоединения по рис. 2.3.

Размещено на http://www.Allbest.ru/

Размещено на http://www.Allbest.ru/

Рисунок 2.2 Схема присоединения конденсаторных батарей на U = 0,38-0,66 кВ через рубильник и предохранитель

2.4 Выбор числа и мощности силовых трансформаторов

Выбор числа и мощности силовых трансформаторов производится в следующем порядке:

1. Определяется число трансформаторов, исходя из требуемой степени надёжности электроснабжения, т.е. с учётом категории электроприемников.

2. Намечаются варианты мощностей силовых трансформаторов, исходя из расчетной мощности подстанции и ряда номинальных мощностей трансформаторов (табл.2.3).

Таблица 2.3

Номинальные мощности трансформаторов

3. Варианты сравниваются по техническим показателям с учетом допустимой перегрузки трансформаторов в рабочем и аварийном режимах.

4. Определяются экономические показатели по вариантам. К исполнению применяется наиболее экономичный вариант.

2.4.1 Выбор числа и мощности силовых трансформаторов

Нагрузки ремонтно-механического цеха относятся к потребителям II категории. Поэтому на подстанции необходимо установить два силовых трансформатора.

Потери активной мощности в трансформаторах

Потери реактивной мощности

Потери полной мощности

Полная расчетная мощность, передаваемая от ГПП до ТП цеха

Мощность трансформаторов

Значение К з принимается в зависимости от категории электроприемников по степени надежности электроснабжения. Для цехов с преобладающей нагрузкой II категории при двухтрансформаторной подстанции с возможным резервированием -.

Принимаем значение К з = 0,75

Мощность одного трансформатора

где n - выбранное количество трансформаторов.

Выбираем два трансформатора типа ТМ-400/10 мощностью 400кВА, имеющего технические данные, приведенные в таблице 2.4.

Таблица 2.4

Технические данные трансформатора

Проверяем выбранные трансформаторы по действительному коэффициенту загрузки:

Кздейст? Кзприн

2.5 Выбор схемы электрических соединений подстанции

Схемы цеховых ТП определяются характеристикой электроприемников и схемами межцехового и внутрицехового распределения, энергии.

Схемы с глухим присоединением трансформатора к питающей линии (рис. 4.1) применяются:

* при отсутствии приемников напряжением свыше 1000В;

* при радиальном питании по схеме блока линия - трансформатор.

Размещено на http://www.Allbest.ru/

Размещено на http://www.Allbest.ru/

Рисунок 2.4 Схема глухого присоединения трансформатора к питающей линии

Коммутационные аппараты на вводе высокого напряжения необходимо устанавливать в следующих случаях:

* при питании от источника питания, находящегося в ведении другой эксплуатирующей организации.

* при удалении источника питания от подстанции на 3-5 км;

* при питании от воздушных линий;

* если отключающий аппарат нужен по условиям защиты, например, для воздействия газовой защиты на выключатель нагрузки (рис. 2.5);

* в магистральных схемах электроснабжения разъединитель или выключатель нагрузки с предохранителями устанавливают с целью селективного отключения трансформатора при его повреждении (рис. 2.6);

Размещено на http://www.Allbest.ru/

Размещено на http://www.Allbest.ru/

Рисунок 2.5 Схема присоединения трансформатора к линии через выключатель нагрузки

Размещено на http://www.Allbest.ru/

Размещено на http://www.Allbest.ru/

Рисунок 2.6 Схема присоединения трансформатора к магистральной линии

* когда требуется более надежное электроснабжение, когда часто отключают и включают трансформаторы подстанции; когда токи короткого замыкания велики и коммутационной способности предохранителей не хватает для отключения при коротком замыкании.

Не секционированная система шин применяется при питании по одной линии и неответственных потребителей III категории надёжности (рис. 4.1, 4.2, 4.3, 4.4).

Размещено на http://www.Allbest.ru/

Размещено на http://www.Allbest.ru/

Рисунок. 2.7 - Схема подключения трансформатора к линии через масляный выключатель

Наличие потребителей II категорий требует секционирования шин нормально разомкнутым выключателем или разъединителем (рис. 4.5). Каждая секция питается по отдельной линии. Секционный аппарат включается при исчезновении напряжения на шинах и отключении питающей линии ВН.

Размещено на http://www.Allbest.ru/

Размещено на http://www.Allbest.ru/

Рисунок 2.8 - Схема электрических соединений подстанции ремонтно-механического цеха

2.6 Расчет высоковольтной питающей линии

Проводники электрических сетей от проходящего по ним тока, согласно закону Джоуля-Ленца, нагреваются. Чрезмерно высокая температура нагрева проводника может привести к преждевременному износу изоляции, ухудшению контактных соединений и пожарной опасности. Поэтому устанавливаются предельно допустимые значения температуры нагрева проводников в зависимости от марки и материала изоляции проводника. Длительно протекающий по проводнику ток, при котором устанавливается наибольшая длительно-допустимая температура нагрева проводника, называется предельно-допустимым током по нагреву I доп. Величина его зависит как от марки провода или кабеля, так и от условий прокладки и температуры окружающей среды. Для выбора сечений жил кабелей и проводов по нагреву определяют расчетный ток и по таблицам приведенным в , , определяют стандартное сечение, соответствующее ближайшему большему току.

Условие выбора сечений

где I р - ток расчётный, А;

К попр - поправочный коэффициент на условия прокладки.

При проложенных рядом двух кабелях, значения К попр принимаются согласно

Значения К попр на температуру окружающей среды при температуре земли, отличной от +15°С и при температуре воздуха, отличной от +25°С, принимаются по .

2. 6 .1 Расчет высоковольтной питающей линии

Ток, протекающий по кабельной линии в нормальном режиме

где К з - коэффициент загрузки трансформатора.

U н - номинальное напряжение на высокой стороне, кВ;

S Т - мощность трансформатора, кВА.

С учетом расширения мощности цеха принимаем расчетный ток равным

По таблице согласно при принимаем трехжильный силовой кабель на с алюминиевыми жилами марки АСБ - 3х16 (A - алюминиевая жила; бумажная изоляция; С - свинцовая оболочка; Б - бронированный двумя стальными лентами с наружным джутовым покровом).

2.7 Расчет токов короткого замыкания

Составляем расчетную схему (рис. 2.9).

Размещено на http://www.Allbest.ru/

Размещено на http://www.Allbest.ru/

Рисунок 2.9 - Расчетная схема

По расчетной схеме составляем схему замещения (рис. 2.10).

Размещено на http://www.Allbest.ru/

Размещено на http://www.Allbest.ru/

Рисунок. 2.10-Схема замещения

Выбираем базисные условия:

Для точки К 1

Для точки К 2

Для точки К 1

Для точки К 2

Определяем сопротивления элементов сети.

Мощность системы

Сопротивление системы в относительных единицах

Сопротивления кабельной линии в относительных единицах

При мощности трансформаторов учитывается активное сопротивление

где r - относительное активное сопротивление обмоток трансформатора, отнесенное к номинальной мощности.

Относительное активное сопротивление обмоток трансформатора (при мощности трансформаторов)

В нашем случае номинальная мощность трансформатора составляет 400кВА, поэтому активное сопротивление трансформатора учитывается.

Результирующие сопротивления до точки К 1

Результирующие сопротивления до точки К 2

Токи и мощность короткого замыкания для точки К 1

Действующее значение начального тока короткого замыкания

При () периодическая составляющая тока КЗ не изменяется и действующие значения

Ударный ток короткого замыкания

где К у - ударный коэффициент.

где T а - постоянная времени.

Мощность короткого замыкания

Определяем токи и мощность короткого замыкания для точки К 2

Первоначальный ток в момент КЗ

По таблице 2.5 принимаем для стороны НН трансформатора мощностью 400кВА,

Таблица 2.5

Значения Ку

Данные расчетов сведены в таблице 2.6.

Таблица 2.6

Данные расчетов сведены

2.8 Выбор электрооборудования подстанции

Общим требованием к электрооборудованию подстанции является обеспечения нормального режима работы и устойчивость его к воздействиям токов КЗ.

2.8 .1 Выбор электрооборудования подстанции на стороне ВН

Проверка сечения кабелей на действие токов КЗ

Выбранные в разделе 5 высоковольтные питающие линии необходимо проверить на термическое действие токов КЗ.

Минимальное сечение кабеля на термическую устойчивость для трехфазного К.З.

где С - коэффициент; для кабелей напряжением 6-10 кВ с медными жилами С = 140, с алюминиевыми жилами С = 95, для алюминиевых шин С = 95, для медных шин С = 170;

t пр - приведенное время, с.

Приведенное время

t пр = t пр.п. +t пр.а. , (2.31)

где t пр.п. - время периодической слагающей тока КЗ, с;

t пр.а. - время апериодической слагающей тока КЗ, с;

Величина t пр.п. определяется по кривым t пр.п. = () в зависимости от действительного времени протекания тока КЗ t.

t = t з +t выкл (2.32)

где t з - время действия защиты, с;

t выкл - время действия выключающей аппаратуры, с;

По заданию время действия защиты (по условиям селективности) t з = 0,5 с, время действия масляных выключателей ГПП t выкл = 0,14 с.

t = 0,5 + 0,14 = 0,64 с

и t = 0,64 с t пр.п. = 0,5 с согласно .

Время апериодической слагающей тока КЗ при действительном времени t < 1 с не учитывается.

В общем случае

В нашем случае

t пр = t пр.п. = 0,5 с

Для кабеля АСБ-3х16 коэффициент С = 95, при I = 0,85кА = 850А

Выбранное сечение жил кабеля 16 мм 2 >6,35 мм 2 , следовательно, кабель АСБ - 3х16 удовлетворяет расчетному току термической устойчивости к токам КЗ.

2.8 .2 Выбор выключателей нагрузки

В разделе 4 принято решение об установке со стороны ВН подстанции выключателей нагрузки с предохранителями.

Условия и данные для выбора приведены в таблице 2.7.

Таблица 2.7

Данные выключателей нагрузки с предохранителями

Выбираем выключатель нагрузки ВНПу-10/400-10зУЗ согласно с предохранителями ПКТ101-10-31,5-12,5УЗ с номинальным током патрона I н.п = 31,5А > I р = 24А и номинальным током отключения I откл = 12,5кА. При выборе предохранителей по отключающей способности должны быть выполнены условия и.

В нашем случае

2.8 .3 Выбор электрооборудования подстанции на стороне НН

Выбор шин

Шины РУ выбираются по расчетному току и проверяются на режим короткого замыкания.

Условия выбора шин

где I н - длительно допустимый ток нагрузки шин, А

где k 1 - поправочный коэффициент, при расположении шин горизонтально k 1 = 0,92;

k 2 - коэффициент для многополосных шин;

k 3 - поправочный коэффициент при температуре окружающей среды, отличной от +25C.

Расчетный ток по формуле (5-2)

По выбираем шины алюминиевые окрашенные однополосные размером 60х8мм, имеющие допустимый ток 1025А при расположении их вертикально.

При расположении шин плашмя

Для проверки шин на динамическую стойкость определяем расчетную нагрузку

где l - расстояние между опорными изоляторами, см;

а - расстояние между осями фаз, см.

По заданию принято l = 50см; а = 10см.

Момент сопротивления шин при установке их плашмя

Размещено на http://www.Allbest.ru/

Размещено на http://www.Allbest.ru/

Рисунок. 2.11 - Расположение шин плашмя

Максимальный изгибающий момент при числе пролетов свыше 2-х

Напряжение на изгиб

Условие проверки шин на динамическую устойчивость:

Наибольшее допустимое напряжение на изгиб G доп составляет

для медных шин 130МПа;

для алюминиевых шин 65МПа.

5,5МПа < 65МПа, следовательно по электродинамической устойчивости шины проходят.

Для проверки шины на термическую устойчивость определяют минимальное сечение по формуле

Сечение выбранных шин составляет 50х5 = 250 мм 2 >71 мм 2 , следовательно, по термической стойкости шина проходит.

2.8 .4 Выбор автоматических выключателей

Автоматические выключатели выбирают по номинальному напряжению, номинальному току и коммутационной способности.

Выбираем трехполюсный автоматический выключатель типаВА53-41.

Таблица 2.8

Данные автоматического выключателя

2. 8 .5 Выбор рубильников

Рубильники выбирают по номинальным напряжению и току и проверяют на электродинамическую и термическую стойкость к токам КЗ.

Выбираем рубильник трехполюсный серии Р2115.

Таблица 2.9

Данные рубильника

Для рубильника Р2115 по I t расч = 500 кА при t к = 1 с.

3. МОНТАЖ ЭЛЕКТРООБОРУДОВАНИЯ

3.1 Назначение, устройство, классификация электрических аппаратов

Электрическими аппаратами (ЭА) называются электротехнические устройства, предназначенные для управления потоками энергии и информации, а также режимами работы, контроля и защиты технических и электротехнических систем и их компонентов.

Одним из основных признаков классификации ЭА является их рабочее (номинальное) напряжение, по которому они делятся на аппараты низкого (до 1000 В) и высокого (свыше 1000 В) напряжения.

Аппараты низкого напряжения выполняют в основном функции коммутации и защиты электрических цепей и устройств (автоматические выключатели, контакторы, пускатели, реле, рубильники и пакетные выключатели, кнопки управления, тумблеры и другие аппараты) и регулирования параметров технических объектов (стабилизаторы, регуляторы напряжения, мощности и тока, усилители, датчики различных переменных).

Аппараты высокого напряжения подразделяются на коммутационные (выключатели, выключатели нагрузки, разъединители), измерительные (измерительные трансформаторы тока и напряжения, делители напряжения), компенсирующие (шунтирующие реакторы), комплектные распределительные устройства.

По своему исполнению аппараты подразделяются на электромеханические, статические и гибридные. Основным признаком электромеханических аппаратов является наличие в них подвижных частей, например контактной системы у коммутационных аппаратов. Статические аппараты строятся с использованием полупроводниковых и магнитных элементов и устройств (диодов, транзисторов, тиристоров и других полупроводниковых приборов, магнитных усилителей и др.). Гибридные аппараты представляют собой комбинацию электромеханических и статических аппаратов. Электрические аппараты классифицируются также:

* по значению рабочих токов -- аппараты слаботочные (до 5А) и сильноточные (свыше 5А);

* по роду тока -- аппараты постоянного и переменного тока;

* по частоте рабочего напряжения -- аппараты с нормальной (до 50 Гц) и повышенной (от 400 до 10 ООО Гц) частотой напряжения.

К аппаратам ручного управления относятся командные маломощные устройства -- кнопки, ключи управления и различные командоаппараты (командоконтроллеры), с помощью которых осуществляется коммутация электрических цепей управления и подача команд управления на ЭП.

Кнопки управления. Кнопки управления различаются по размерам -- нормальные и малогабаритные, по числу замыкающих и размыкающих контактов, по форме толкателя, по величине и роду тока и напряжения, по степени защиты от воздействия окружающей среды. Две, три или более кнопок, смонтированных в одном корпусе, образуют кнопочную станцию. На рис. 3.1, а показано условное изображение одноцепных кнопок с замыкающим (кнопка SBI) и размыкающим (кнопка SB2) контактами. Контакты кнопок и других электрических аппаратов на схемах изображаются в так называемом нормальном состоянии, когда на них не оказывается механического, электрического, магнитного или какого-либо другого воздействия. Двухцепные кнопки имеют обе пары показанных контактов с единым приводом.

Рисунок 3. Условные изображения: а -- кнопки управления; б -- ключ управления; в -- электрические контакты

Ключи управления (универсальные переключатели). Эти аппараты имеют два или более фиксированных положений рукоятки управления и несколько замыкающих и размыкающих контактов. На рис. 3.1, б показан переключатель, имеющий три фиксированных положения рукоятки. В среднем положении рукоятки (позиция 0) замкнут контакт SM1, что обозначается точкой на схеме, а контакты SM2 и SM3 разомкнуты. В положении 1 ключа замыкается контакт SM2 и размыкается SM1, в положении 2 -- наоборот. На рис. 3.1, в показаны замыкающий и размыкающий контакты.

Командоконтролллеры (командоаппараты) представляют собой аппараты для коммутации нескольких маломощных (ток нагрузки до 16 А) электрических цепей с управлением от рукоятки или педали с несколькими положениями. Их электрическая схема изображается аналогично схеме ключей управления и переключателей.

К силовым коммутационным аппаратам с ручным управлением относят рубильники, пакетные выключатели, контроллеры и автоматические выключатели.

Рубильники представляют собой простые коммутационные аппараты, предназначенные для неавтоматического нечастого замыкания и размыкания силовых электрических цепей постоянного и переменного тока напряжением до 500В и током до 5000А. Они различаются по величине коммутируемого тока, количеству полюсов (коммутируемых цепей), виду привода рукоятки и числу ее положений (два или три).

Пакетные выключатели представляют собой разновидность рубильников, отличающихся тем, что их контактная система набирается из отдельных пакетов по числу полюсов (коммутируемых цепей). Пакет состоит из изолятора, в пазах которого находятся неподвижный контакт с винтовыми выводами для подключения проводов и пружинный подвижный контакт с устройством искрогашения.

Разновидностью рубильников являются переключатели-разъединители с различным типом привода -- рычажным, с центральной рукояткой, с приводом от маховика или штанги.

Контроллеры являются многопозиционными электрическими аппаратами с ручным или ножным приводом для непосредственной коммутации силовых цепей, в основном электрических двигателей. Силовые контроллеры бывают двух видов: кулачковые и магнитные.

Кулачковые контроллеры характеризуются тем, что размыкание и замыкание их контактов обеспечивается смонтированными на барабане кулачками, поворот которых осуществляется с помощью рукоятки, маховичка или педали. За счет профилирования кулачков обеспечивается необходимая последовательность коммутации контактных элементов.

Магнитные контроллеры представляют собой коммутационное устройство, в состав которого входят командоконтроллер и силовые электромагнитные аппараты -- контакторы. Командоконтроллер с помощью своих контактов управляет катушками контакторов, которые уже своими контактами коммутируют силовые цепи двигателей. Срок службы магнитных контроллеров при одних и тех же условиях существенно выше, чем кулачковых контроллеров, что определяется высокой коммутационной способностью и износостойкостью электромагнитных контакторов.

Магнитные контроллеры нашли основное применение в электроприводе крановых механизмов, работа которых характеризуется большой частотой в...

Подобные документы

    Проектирование ремонтно-механического цеха. Выбор числа и мощности трансформаторов подстанций, сбор электрических нагрузок цеха. Компенсация реактивной мощности. Расчет параметров, выбор кабелей марки ВВГ и проводов марки АПВ распределительной сети.

    курсовая работа , добавлен 19.08.2016

    Характеристика ремонтно-механического цеха. Описание схемы электроснабжения. Конструкция силовой и осветительной сети. Расчет освещения и электрических нагрузок. Выбор числа и мощности трансформаторов, места расположения, оборудования питающей подстанции.

    курсовая работа , добавлен 13.01.2014

    Описание технологического процесса обеспечения электроснабжения ремонтно-механического цеха. Выбор напряжения и рода тока. Расчёт числа и мощности трансформаторов, силовой сети, ответвлений к станкам. Выбор и проверка аппаратуры и токоведущих частей.

    курсовая работа , добавлен 09.11.2010

    Характеристика ремонтно-механического цеха. Выбор схемы электроснабжения. Расчет электрической нагрузки и параметров внутрицеховых сетей. Выбор аппаратов защиты. Расчет токов короткого замыкания. Обслуживание автоматических выключателей. Охрана труда.

    курсовая работа , добавлен 12.01.2013

    Проектирование внутреннего электроснабжения завода и низковольтного электроснабжения цеха. Расчет центра электрических нагрузок. Выбор номинального напряжения, сечения линий, коммутационно-защитной аппаратуры электрических сетей для механического цеха.

    дипломная работа , добавлен 02.09.2009

    Краткая характеристика ремонтно-механического цеха, технологического режима работы, оценка электрических нагрузок. Описание рода тока, питающего напряжения. Алгоритм расчета электрических нагрузок, необходимых для выбора электрооборудования подстанции.

    дипломная работа , добавлен 13.07.2015

    Определение расчетной нагрузки ремонтно-механического цеха. Распределение приёмников по пунктам питания. Выбор защитных аппаратов и сечений линий, питающих распределительные пункты и электроприемники. Расчет токов короткого замыкания в сети до 1000 В.

    курсовая работа , добавлен 25.04.2016

    Описание электрического оборудования и технологического процесса цеха и завода в целом. Расчет электрических нагрузок завода, выбор трансформатора и компенсирующего устройства. Расчет и выбор элементов электроснабжения. Расчет токов короткого замыкания.

    дипломная работа , добавлен 17.03.2010

    Расчет электроснабжения ремонтно-механического цеха. Оценка силовых нагрузок, освещения, выбор трансформаторов, компенсирующих устройств, оборудования на стороне низшего напряжения. Построение карты селективности защиты, заземление и молниезащита цеха.

    курсовая работа , добавлен 27.10.2011

    Электроснабжение ремонтно-механического цеха. Установка компрессии буферного азота. Расчет электрических нагрузок систем электроснабжения. Выбор числа и мощности трансформаторов. Расчет токов короткого замыкания и релейной защиты силового трансформатора.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

1 Краткая характеристика электроприемников цеха по режиму работы и категории бесперебойности электроснабжения

В цехе размещены вентиляторы, насосы, станки, мостовые краны, автоматические линии, транспортеры, машины дуговой сварки и электропеч и сопротивления. Перечень электрооборудования, размещенного в цехе, его установленная мощность, количество приведены в таблице 1.1.

В цехе имеются потребители с длительным и повторно-кратковременным (ПКР) режимами работы.

ПКР - это режим, при котором температура за время включения повышается, за время пауз снижается, однако, нагрев за время цикла этого электроприемники не достигает установившейся температуры, а за время паузы температура не достигает температуры окружающей среды.

Продолжительность включения для ПКР:

где tц < 10 мин - среднее время цикла.

В ПКР работают электродвигатели мостовых кранов и машины дуговой сварки (данный режим изображен на рисунке 1 (б));

Длительный режим - это режим, при котором температура ЭП возрастает по экспоненте и через определённое время достигает установившегося значения.

ЭП продолжительного режима работы характеризуются коэффициентом включения:

В длительном режиме работают электроприводы насосов, вентиляторов и станков.

Таблица 1.1 - Ведомость электрических нагрузок цеха

Наименование механизма или агрегата

Руст, кВт

Станок фрезерный

Станок токарный

Автоматическая линия

Вентилятор

Автоматическая линия

Машина дуговой сварки

Индукционная печь

Электропечь сопротивления

Мостовой кран

Транспортер

Литейный цех необходимо отнести к потребителям I категории, перерыв в электроснабжении которых может повлечь опасность для жизни людей или значительный материальный ущерб, связанный с повреждением оборудования, массовым браком продукции или длительным расстройством сложного технологического процесса производства.

Потребители электрической энергии I категории должны иметь два источника питания и АВР (автоматическое включение резерва) на секционном выключателе.

2 Выбор напряжения цеховой сети и системы питания силовой нагрузки и освещения

Цеховую сеть можно выполнить на напряжение 220 и 380 В.

Напряжение 660 В должно применяться на предприятиях где имеется большое количество электродвигателей в диапазоне мощностей 200 - 600 кВт. Перевод питания электроприёмников с напряжения 380 В на 660 В снижает затраты на сооружение низковольтной кабельной сети примерно на 30% и сокращает потери электроэнергии в этой сети в 1,3-1,4 раза. Внедрение напряжения 660 В обеспечивает снижение капитальных затрат относительно общей стоимости электроустановок стоящего предприятия на 0,5-1,5%.

В рассматриваемом цехе максимальная мощность электродвигателя 75 кВт, поэтому эффективность внедрения напряжения 660 В незначительна.

Для установленных потребителей электроэнергии цеха основным напряжением питания является напряжение 380 В. Питание освещения осуществляется напряжением 220 В.

Таким образом, в качестве основного напряжения в цехе выбирается напряжение 380/220 В.

Осветительная и силовая нагрузки будут питаться от общих цеховых трансформаторов 10/0,4 кВ.

3 Выбор электродвигателей, пусковой и защитной аппаратуры

Согласно ПУЭ для привода механизмов, не требующих регулирования частоты вращения, независимо от их мощности рекомендуется применять электродвигатели синхронные или асинхронные с короткозамкнутым ротором. Обычно для одного цеха выбирают двигатели одной серии.

Выбираем асинхронные двигатели с короткозамкнутым ротором серии АИР напряжением 380 В, так как они просты в исполнении, дешевы и не требуют регулирования частоты вращения.

Серия АИР охватывает диапазон номинальных мощностей от 0,06 до 400 кВт. Двигатели выпускаются на частоты вращения 3000, 1500, 1000, 750, 600 и 500 об/мин.

Двигатели этой серии предназначаются для общего применения в промышленности в условиях умеренного климата, в невзрывоопасной среде, не содержащей агрессивных газов и паров, разрушающих металлы и изоляцию, и токопроводящей пыли. Двигатели серии АИР предназначены для работы от сети переменного тока частотой 50 Гц. Они могут эксплуатироваться при отклонениях напряжения сети от номинального в пределах -5 - +10% и отклонениях частоты на 2,5% от номинального значения.

Для крана принимаем асинхронные двигатели серии 4MTF (с фазным ротором), 4MTKF (с короткозамкнутым ротором). Это двигатели повторно-кратковременного режима работы. Применяются на кранах с тяжелыми условиями работы. Основной режим работы ПВ 25%.

Условия выбора электродвигателей:

Выбор пусковой и защитной аппаратуры производим по выражению (3.2):

где - номинальный ток расцепителя, А;

Номинальный ток электродвигателя, А.

Величины, приведённые в каталогах на асинхронные электродвигатели, связаны между собой следующими зависимостями:

где - номинальная мощность, кВА;

Номинальный ток, А;

Номинальная мощность, кВт;

Номинальный коэффициент мощности;

КПД при номинальных нагрузке и параметрах

Типы двигателей и их технические характеристики приведены в таблице 3.1.

Таблица 3.1. - Выбор двигателей для электроприемников

Название ЭП

Кол.

Р,

Данные электродвигателей

Тип двигателя

U,

з,

Станок токарный

Станок фрезерный

Автоматическая линия

Вентилятор

Автоматическая линия

Мосто-вой

подъем груза

передвиж. тележки

передвиж. крана

Транспортёр

АИР180М2У3

Асинхронный

Унифицированная серия (Интерэлектро)

Привязка к установочно-присоединительным размерам

Высота оси вращения, мм

Установочный размер по длине станины

Число полюсов

Модификация со встроенной температурной защитой

Выберем электродвигатель, пусковую и защитную аппаратуру для станка токарного, P=18кВт.

Из выбираем АД АИР180S4 с Рн=18,5 кВт; cos=0,85; =90%;

n =1500 об/мин.

Рассчитаем по выражению (3.5):

.

В качестве пусковой и защитной аппаратуры будем использовать продукцию немецкой компании ABB. Все изделия выполнены и проверены согласно последним национальным и международным стандартам. Превосходят существующие аналоги в технических характеристиках, функциональности, коммутационной возможности, легкости эксплуатации и установки.

Выбираемая аппаратура осуществляет следующие виды защит:

Защита двигателей осуществляется автоматическими выключателями серии MS. Автоматы для защиты электродвигателей ABB серии MS -- предназначены для защиты двигателей от короткого замыкания и перегрева обмотки.

-- характеристика срабатывания MS соответствует характеристике D, что позволяет автомату не реагировать на пусковые токи.

-- плавная регулировка тепловой уставки позволяет более точно настроить автомат на требуемую величину тока с целью предотвращения перегрузки и сгорания двигателя.

-- клеммы защищены от случайного прикосновения, а конструкция моноблока гарантирует максимальную оперативную безопасность.

-- крепление автомата осуществляется на DIN-- рейку.

-- глубина защиты электродвигателя может быть повышена за счет отдельно поставляемых быстромонтируемых элементов -- независимого расцепителя и реле минимального напряжения.

-- могут использоваться как обычные автоматические выключатели в распределительных устройствах широкого применения при индуктивном характере цепей потребителей.

В связи с тем, что автоматические выключатели имеют регулируемую уставку срабатывания, нет необходимости дублировать их тепловыми реле.

Заносим результаты в таблицу 3.2.

Таблица 3.2 - Выбор аппаратуры защиты и управления

Наименование технологического оборудования.

Электродвигатели или электроприемники

Аппарат защиты

Аппарат управления

Мощность Рном, кВт

номинальный ток

количество п, шт.

Выключатель

номинальный ток выключателя

номинальный ток расцепителя

Контактор, пускатель

номинальный ток

по АС-3, Iн, А

Станок токарный

Станок фрезерный

Автоматическая линия

Вентилятор

Автоматическая линия

Машина дуговой сварки

Электропечь

сопротивления

Подъем груза

Перед. тележки

Перед. крана

Индукцион. печь

Транспортёр

4 Расчет электроосвещения

4.1 Выбор системы освещения и освещённости цеха

электроприемник электроснабжение цех напряжение

В заданном литейном цехе производится обработка литья на металлорежущих фрезерных и токарных станках работа на таком оборудовании относится к высокой точности (разряд IIIб), и большинство операций следует производить при комбинированном освещении.

Минимальная освещённость при комбинированном освещении для разряда зрительных работ IIIб составляет 1000 лк. При этом освещённость от общего освещения в системе комбинированного - 300 лк .

Все места в заданном цехе имеют местное освещение.

При выборе источников света для общего освещения учитывается высота помещения, среда, категория помещения. Поскольку помещение литейного цеха является помещением средней высоты (по заданию h = 10м), то наиболее экономичной является установка ламп ДРИ. Данному источнику света соответствует светильник типа ГСП.

Характер зрительных работ и условия среды допускают использование закрытых светильников со степенью защиты IP50 и выше.

Выбираем светильники типа ГСП 51 «Гермес» производства

Характеристики светильника ГСП 51 Гермес:

-- номинальное напряжение 220 V;

-- степень защиты: IP54 (пыле-брызгозащищеные);

-- источники света: - металлогалогенная элипсоидная лампа (ДРИ), цоколь Е40 (мощность 250-400 Вт) ;

-- тип монтажа: подвесной;

-- климатическое исполнение У1.

Также в цехе предусмотрена система аварийного освещения. Наименьшая освещённость рабочих поверхностей производственных помещений к территории предприятий, требующих обслуживания при аварийном режиме, должна составить 5 - 10 % от освещённости рабочего освещения при системе общего освещения. Для создания равномерного распределения освещенности по всей площади цеха принимаем равномерное размещение светильников. Светильники располагаются рядами параллельно продольной оси цеха. Для снижения пульсаций светового потока в каждой точке устанавливаем по три светильника.

Аварийное освещение выполняем лампами накаливания со светильниками НСП.

4.2 Выбор типа и мощности источника света

Исходные данные:

- длина цеха а = 168 м;

- ширина цеха b = 96 м;

- высота цеха hц = 10 м;

- напряжение системы освещения U = 220 В;

- минимальная освещенность ЕРАБ = 300 лк.

4.2.1 Расчёт рабочего освещения

Т.к. высота цеха 10 м целесообразно использовать ртутные лампы высокого давления типа ДРИ 400-5 со светильниками ГСП51-400-001/003 с КСС Д.

Располагаем светильники в шахматном порядке, при этом с целью снижения пульсаций светового потока, характерных при использовании этого типа ламп, в каждой точке устанавливаем по 2 светильника.

Высота подвеса светильников: HП = h - hС,

где h - высота цеха, м;

h` = 1,8 - расстояние от светильника до перекрытия (свес), м

HП = 10-1,8 = 8,2 м.

Расчетная площадь цеха: S = L·b = 168·96 =16128 м2

Намечаем количество ламп: шт.

Отношение потока, падающего на освещаемую поверхность ко всему потоку ламп, называется коэффициентом использования Ки. Зависимость Ки от площади помещения, высоты и формы учитывается индексом помещения i.

Индекс помещения:

,

где S - площадь цеха, м2;

L - длина цеха, м;

b - ширина цеха, м.

При i = 7,45 и пот=0,5, ст=0,5, пол=0,3 имеем Ки=0,95 .

Световой поток одной лампы:

лм

где КЗ=1,5 - коэффициент запаса для вспомогательных помещений с нормальной средой и помещений жилых и общественных зданий для люминесцентных ламп;

КИ=0,95 - коэффициент использования осветительной установки;

n=161 - ориентировочно выбранное число ламп в цехе;

z=1,15 - поправочный коэффициент, учитывающий отношение между Еmin и Еmax.

Выбираем лампу ДРИ 400-5, т.к. она является наиболее мощной лампой устанавливаемой в светильниках ГСП.

Принимаем световой поток лампы ДРИ 400-5 Фл=35000 Лм.

Корректируем количество светильников в цехе:

Принимаем n = 252 лампы.

Окончательно принимаем светильники типа ГСП51-400-001/003 с лампами ДРИ 400-5 с мощностью одной лампы 400 Вт со световым потоком 35000 Лм. Составляем окончательный план цеха, на который наносим светильники и питающие сети рабочего освещения.

При количестве ламп ДРИ 400-5 равном 252 шт., в цехе создается следующая освещенность:

Таким образом, данное количество ламп создает требуемую освещенность.

4.2.2 Расчёт аварийного освещения

Аварийное освещение составляет 5-10 % от рабочего

Еав = 30 лк; Ки=0,95; Кз=1,3; Фл=18600 лм.

шт.

Принимаем 40 светильников. Выбираем лампу накаливания Г215-225-1000 со светильником НСП-17. Световой поток лампы Фл=18600 лм.

лк

Таким образом, данное количество ламп создает требуемую аварийную освещенность.

4.3 Выбор кабелей, питающих щитки освещения

Условие выбора сечения кабелей имеет вид:

IР < IД.Д, (4.1)

где IР - расчётный ток, А;

IД.Д - допустимая длительная токовая нагрузка на кабель. Для невзрывоопасных помещений

IД.Д = IН.Д, (4.2)

где IН.Д - длительно допустимый ток для кабелей при нормальных условиях прокладки, .

4.3.1 Выбор кабеля, питающего щиток рабочего освещения

Выбираем кабель, питающий щиток рабочего освещения основного помещения кузнечного цеха.

Расчётная нагрузка внутреннего освещения здания РР определяется по установленной мощности освещения РУ и коэффициенту спроса kС:

РР = РУ * kС, (4.3)

Установленная мощность РУ определяется суммированием мощности ламп всех стационарных светильников, при этом для учёта потерь в пускорегулирующих аппаратах газоразрядных ламп ДРИ умножаем на 1.1:

РУ = n * РЛ * 1.1,

где n - количество ламп, шт.

РЛ - номинальная мощность лампы, Вт.

k с = 0.9 ,

РУ = 2524001.1 =110440Вт,

РР = 1104400.9 =99396 Вт,

QР = РР * tg ц = 99396*1.44 = 143130.24 ВАр,

где tg = 1.44 для ламп ДРИ .

,

Определяем расчетный ток для выбора проводов:

,

где Uном = 380 В - номинальное напряжение сети.

Выбираем кабель марки АВВГ.

Принимаем пятижильный провод АВВГ (5х120 мм2) с Iн.д= 295 А.

4.3.2 Выбор кабеля, питающего щиток аварийного освещения

Определяем установленную мощность ламп:

Ру = 401000 = 40000 Вт.

Определяем расчётную нагрузку:

Рр = Ру · Кс =40000 0,9 = 36000 Вт,

где Кс = 0,9 .

Qр = Рр · tg ц = 36000·0,33 = 11880 вар,

где tg = 0,33 для ламп накаливания .

Определяем полную мощность рабочего освещения:

.

Определяем расчётный ток для выбора проводов:

,

Принимаем кабель АВВГ (5х25мм2) пять жил.

Iн.д= 70 А > IР=57.59А

Результаты расчета сводим в таблицу 4.1.

Таблица 4.1 - Выбор кабелей для щитков освещения

4.4 Выбор схемы питания осветительной установки

Питание электрического освещения производится от общих для осветительных и силовых нагрузок трансформаторов с низшим напряжением 0,4 кВ (напряжение сети 380/220 В).

Для питания ламп применяется провод АВВГ.

Для распределения электроэнергии рабочего и аварийного освещения, а также для защиты сетей от токов короткого замыкания применяем компактные распределительные щиты. Для аварийного и на отходящих линиях рабочего освещения используем модульными автоматическими выключателями АВВ. В качестве вводного выключателя рабочего освещения выбираем модульный автоматический выключатель АВВ TMAX.

Схема питания осветительной установки показана на рисунке 4.1.

Размещено на http://www.allbest.ru/

Осветительная сеть цеха предусматривает наличие одного группового щитка, к которому групповыми линиями присоединяются светильники. В случае аварийного прекращения действия рабочего освещения предусмотрено аварийное освещение, обеспечивающее возможность продолжения работы и безопасную эвакуацию людей из цеха.

Светильники аварийного освещения автоматически включаются при аварийном отключении рабочего освещения.

Управление рабочим освещением осуществляется автоматическими выключателями, установленными на групповом щитке. Для удобства эксплуатации и безопасности производства ремонтных работ и замены отдельных элементов схемы электроосвещения необходимо предусмотреть возможность отключения группового щитка. Эту функцию выполняет выключатель.

4.5 Выбор типа и расположения группового щитка, компоновка сети и её выполнение

Для аппаратов аварийного и рабочего освещения в качестве осветительных щитков используем щитки АВВ типа SRN.с монтажной платой Они удобны в эксплуатации и имеют компактные геометрические размеры.. Имеют степень защиты IP 65.

4.5.1 Выбор аппаратов рабочего освещения

Светильники рабочего освещения разделены на 8 рядов (рисунок 4.2).

В ряду 1 - на фазу А В С присоединяют 10 ламп

в ряду 2 - на фазу А присоединяют 11 ламп, В-11,С-10

в ряду 3- на фазу А присоединяют 11 ламп, В-10,С-11

в ряду 4- на фазу А присоединяют 10 ламп, В-11,С-11.

в ряду 5- на фазу А присоединяют 11 ламп, В-11,С-10

в ряду 6- на фазу А присоединяют 11 ламп, В-10,С-11

в ряду.7- на фазу А присоединяют 10 ламп, В-11,С-11

в ряду 8 - на фазу А В С присоединяют 10 ламп;

Определяем расчетную мощность фазы А в одном ряду светильников:

Рнбз = Рл · n · kс,

где Рл - мощность одной лампы, Вт;

kс = 1,1 - поправочный коэффициент на расход мощности ПРА.

Рнбз = 400·11·1,1 =4840 Вт.

Определяем расчётный ток

где UФ = 220 В - фазное напряжение;

сosц = 0,8 - для ламп ДРИ .

Для рабочего освещения выбираем провод АВВГ 5х6, с Iном=32 А . Для распределения электроэнергии и защиты сетей от токов короткого замыкания применяем автоматические выключатели.. Количество выключателей на фидерах - 8 трёхполюсных. Выключатели на отходящих линиях S203 32A Iн.в.= 32А.

4.5.2 Выбор аппаратов аварийного освещения

Определяем расчётную мощность наиболее загруженной фазы в одном ряду.

В ряду 1 - на фазу А В присоединяют 2 лампы, на фазу С присоединяют 1 лампу

в ряду 2 - на фазу А -2,В-1 ,С-2;

в ряду 3 - на фазу А-1, В-2, С-2;

в ряду 4 - на фазу А-2, В-2, С-1.

в ряду 5 - на фазу А-2, В-1, С-2;

в ряду 6 - на фазу А-1, В-2, С-2;

в ряду 7 - на фазу А-2, В-2, С-1.

в ряду 8 - на фазу А-2, В-1,С-2 ;

Таким образом, наиболее загружена фаза А.

Рнбз = ?Рл · n,

где РЛ - мощность одной лампы, Вт;

n - количество светильников на фазе, шт;

РНБЗ=1000*2=2000 Вт.

Определяем расчётный ток для наиболее загруженной фазы

где UФ=220 В - фазное напряжение;

Cosц=0,95 - для ламп накаливания .

Для аварийного освещения выбираем кабель АВВГ 5*2,5 с Iном=23А .

Для распределения электроэнергии и защиты сетей от токов короткого замыкания применяем автоматические выключатели. Расчётный ток нагрузки: IР=57,59 А.

Количество выключателей на фидерах - 8 трёхполюсных. Выключатели на отходящих линиях S203 10A Iн.в.= 10А.. Вводной выключатель S203 63A , Iн.р. =63 А.

Выбранное оборудование сводим в таблицу 4.2.

Таблица 4.2 - Осветительные токопроводы и групповые щитки

Помещение (вид освещения)

Групповой щиток

Токопровод

Фидерные выключатели

Вводной выключатель

Основное (рабочее)

SRN6420

Основное (аварийное)

АВВ

«Europa»

План расположения светильников представлен на рисунке 4.2.;

На плане показаны:

- Светильник ГСП18-400-07 с лампами ДРИ 400-5 рабочего освещения

- Светильник НСП-17 с лампой накаливания Г 215-225-1000 аварийного освещения

- Щит рабочего освещения

- Щит аварийного освещения

- Сеть и аварийного рабочего освещения

5 Расчет электрических нагрузок

5.1 Расчет сварочной нагрузки методом эффективных мощностей

Расчёт ведём по формуле:

, (5.1)

где S ном - мощность сварочного трансформатора (из задания), кВА;

ПВ - продолжительность включения, %;

Находим активную и реактивную нагрузки:

, (5.2)

где cos ц = 0,5 , откуда tg ц = 1,73

Рр.д.с.= 91,40,5 =45,7 кВт;

Qр.д.с. = 45,71,73 =79,06 кВАр

Рассчитываем ток:

, (6.3)

5.2 Расчет электрических нагрузок индукционной электропечи

где cos ц = 0,95 , откуда tg ц = 0,32

Ри.п = 70 0,95 =66,5кВт;

Qи.п. = 66,50,32 =21,28кВАр (5.3)

5.3 Расчёт электрических нагрузок методом упорядоченных диаграмм

Разбиваем все электроприёмники по группам со сходными характеристиками. Для каждой группы электроприёмников определим активную нагрузку по формулам:

(5.4)

(5.5)

Для приёмников, работающих в ПКР:

, (5.6)

Результаты расчётов приведены в таблицу 5.1.

Таблица 5.1 - Расчёт средней нагрузки за максимально загруженную смену

Наименование

Кол

PНОМ,

КИ,

Станок токарный

Станок фрезерный

Автоматическая линия

Вентилятор

Автоматическая линия

Электропечь сопротивления

Мостовой кран (5 т)

Транспортер

(5.7)

где n - число всех электроприёмников;

. (5.8)

так как nэф>10, то коэффициент максимума

. (5.9)

(5.10)

Полная расчётная нагрузка

. (5.11)

Расчётная величина тока:

. (5.12)

5.4 Распределение нагрузки по шинопроводам

Распределим электроприёмники цеха по шинопроводам. Расчёт ведём по формулам:

Среднесменная нагрузка:

(5.17)

(5.18)

где n - число электроприёмников в группе;

К - число групп электроприемников;

Ки.i - коэффициент использования электроприемников;

Рном i - номинальная мощность электроприемников i-ой группы;

tgцi - коэффициент мощности электроприемников.

Находим групповой коэффициент использования:

, (5.19)

где ni - число электроприёмников в группе.

Эффективное число электроприёмников:

. (5.20)

Определяем коэффициент максимума:

(5.21)

Расчётные максимумы активной и реактивной нагрузки:

(5.22)

Полная расчётная нагрузка

. (5.23)

Расчётная величина тока:

. (5.24)

Результаты распределения электроприёмников по шинопроводам приведены в таблице 5.2. План цеха с расположением шинопроводов показан на рисунке 5.2.

Таблица 5.2 - Распределение электроприемников по ШРА

Шинопровод

Наименование электроприёмника

Станок токарный

Вентилятор

Автоматич.линия

Транспортер

Станок токарный

Станок фрезерный

Вентилятор

Эл.печь сопротивления

Транспортер

Мостовой кран

Станок токарный

Станок фрезерный

Автоматич.линия

Станок фрезерный

Вентилятор

Машина дуговой сварки

Станок токарный

Станок фрезерный

Автоматическая линия

Вентилятор

Мостовой кран

Рисунок 5.2 - План цеха с расположением шинопроводов

5.4 Выбор распределительных шинопроводов

Выбор шинопроводов выполняется по условию:

Iр < Iном, (5.25)

где Iр - расчетный ток, А;

Iном - номинальный ток шинопровода, А .

Для примера выберем распределительный шинопровод для ШРА-1:

Расчётный ток первой группы электроприёмников равен Iр = 120,77А.

Используем шинопровод Zucchini -- оптимальный вариант для создания магистралей электропитания практически на любом объекте. Он легко и быстро монтируется из готовых заводских модулей, как конструктор собирается монтажником, прошедшим минимальный инструктаж. Шинопровод Zucchini - самонесущая конструкция, на которую сразу устанавливается необходимая электроарматура. Основные преимущества шинопроводов Zucchini: пожаробезопасность, небольшие размеры, возможность многоканального использования, длительный срок эксплуатации.. Шинопровод для распределения электроэнергии малой и средней мощности, габариты 39x97 мм, номинальный ток 160A с отводами с обеих сторон, кожух - PE проводник.

Стандартная степень защиты IP40 (IP55 - с дополнительными аксессуарами).

Данная линейка включает: торцевые блоки подачи питания, 3-, 2-, 1-метровые и нестандартные заказные прямые элементы, горизонтальные/вертикальные углы, отводные блоки с устройствами разъединения/защиты (плавкие предохранители, рубильники) и крепежные принадлежности (кронштейны).

Выбираем распределительный шинопровод MINI SBARRA с номинальным током

Iном = 160 А.

Iр = 120,77 А < Iном = 160А.

Условие выполняется, следовательно, шинопровод выбран правильно. Выбор шинопроводов сводим в таблицу 5.3.

Таблица 5.3 - Выбор шинопроводов

Группы электроприёмников

Тип шинопровода

Кабель

АВВГ (4х120)

АВВГ (4х120)

АВВГ (4х120)

АВВГ (4х120)

АВВГ (4х120)

5.5 Ответвления к электроприемникам

Участок электросети, питающий отдельный приёмник электроэнергии, называется ответвлением. Ответвления к электроприёмникам от шинопроводов выполняем кабелем АПВ в трубе, для машин дуговой сварки - кабелем АВВГ (согласно ПУЭ в производственных помещениях при наличии опасности механических повреждений в эксплуатации, прокладка небронированных кабелей допускается при условии их защиты от механических повреждений). Выбор сечения проводов и кабелей выбираем по условию допустимого нагрева:

Iр< Iдд, (5.26)

где Iдд - допустимая длительная токовая нагрузка на провод (кабель), А

Iдд = Кп Iнд = 1 · Iнд (5.27)

Для ответвлений к отдельным электроприемникам длительного режима работы в качестве расчётного тока принимаем номинальный ток электроприёмника:

Iном. эп Iнд (5.28)

Для примера выберем провода, питающие насос P=8,5кВт:

Выбираем четырехжильный провод АПВ (4х2,5) с Iнд =19 А . Проводим проверку по условию Iном. эп Iнд:

Iном. эп = 16.9А Iнд = 19 А,

провод проходят по длительно допустимому току нагрева. Выбранные провода сводим в таблицу 5.4.

Таблица 5.4 - Выбор проводов и кабелей к потребителям

Электроприёмники

Марка кабеля

Станок токарный

Станок фрезерный

Автоматическая линия

Вентилятор

Автоматическая линия

Машина дуговой сварки

Электропечь

сопротивления

Индукционая печь

Транспортер

5.4 Выбор троллейных линий

Выбираем троллейную линию для мостового крана с повторно - кратковременным режимом работы грузоподъёмностью 5 т. На кране установлены три двигателя с фазным ротором из серии MTF. Обычно в работе одновременно находится не более двух двигателей. Принимаем наиболее тяжелый режим, когда в работе одновременно находятся два наиболее мощных крановых двигателя с номинальной мощностью 12 кВт и 7,5 кВт.

Параметры двигателей: 1 = 83,5 %, cos 1 = 0,73, Рном1 = 12 кВт, 2 = 77 %,

cos 2 = 0,7, Рном2 = 7,5 кВт.

Активная мощность:

Реактивная мощность:

Расчетный ток одного крана:

Выбираем троллейный шинопровод ШТР4 - 100 с Iном = 100 А .

6 Выбор числа и мощности цеховых трансформаторов

Т.к. по составу и характеру нагрузки электропотребителей цех относится к первой категории по бесперебойности электроснабжения, необходимо установить двухтрансформаторную подстанцию.

Мощность трансформаторов ТП цеха определяется по формуле:

где Sр.ц - полная расчётная мощность цеха, кВА;

n - количество трансформаторов, шт.;

вт - коэффициент загрузки трансформаторов.

Принимаем вт = 0,8 (для потребителей первой категории по бесперебойности электроснабжения) .

где Рмц, Qмц - максимальные расчётные (активная и реактивная) мощности силовой нагрузки цеха, кВт, квар;

Рро, Qро - расчётная (активная и реактивная) мощности освещения, кВт, квар;

Рсв, Qсв - расчётная (активная и реактивная) мощности сварочных установок, кВт, квар;

Максимальные расчётные мощности силовой нагрузки цеха:

Рмц = 596,47 кВт,

Qмц = 309,95 квар.

Расчётная мощность освещения:

Рро = 135,39 кВт,

Qро = 155,01 квар.

Расчётная мощность сварочных установок:

Рсв = 112,2 кВт,

Qсв = 100,34квар.

Полная расчётная мощность цеха:

Мощность трансформаторов цеха:

На основании Sтр выбираем два трансформатора ТМЗ - 630/10 .

Таблица 6.1.- Справочные данные трансформаторов.

Тип трансформатора

Напряжение,кВ

Потери, кВт

Фактический коэффициент загрузки:

Выбранная ТП располагается в помещении цеха. Подстанция кроме двух трансформаторов содержит вводные шкафы на напряжение 10 кВ и комплектные распределительные шкафы, при помощи которых собрана схема КРУ напряжением 0,4 кВ.

7 Выбор схемы электроснабжения

Рассмотрим проблему осуществления внутреннего электроснабжения цеха, а именно: расположение трансформаторной подстанции ТП-10/0,4 кВ; тип питающей сети 0,4 кВ и ее исполнение. Во-первых, следует заранее оценить внутреннюю среду цеха (ее агрессивное воздействие на электрооборудование и сети) и тип производства, осуществляющегося в данном цеху (взрыво- и пожароопасность). По заданию среда внутри цеха - нормальная, производство - механическое. Данное производство относится к первой категории бесперебойности питания. Для питания силовой нагрузки цеха, на основании этого, выбирается магистральная схема электроснабжения, т.к. шинопроводы проектируются для нормальной среды.

Электроснабжение выполняется магистральными, распределительными и троллейными шинопроводами.

Достоинства, недостатки и особенности применения магистральной схемы сети:

Магистральная схема удобна возможностью подключения электрооборудования в любой точке сети - при этом не требуется отключение всех приемников как при радиальной схеме;

В техническом исполнении магистральная схема открыта, наглядна и проста (так как ШМА проложены над конструкциями в отличие от кабельных линий, которые могут прокладываться как по конструкциям, так и по коммуникациям, в кабельных каналах) - то есть обеспечивается отказ от скрытой проводки;

Однако при использовании ШМА происходит большой расход металла;

Применение ШМА требует специальных конструкций и само исполнение шинопроводов выполняется по специальным схемам соединения в целях уменьшения потерь мощности и напряжения;

Магистральные шинопроводы выполняются на большие токи (до 3200 А).

Ввод питания на 10 кВ должен осуществляться с учетом следующих факторов:

По кратчайшему расстоянию от ГПП до цеха;

В зависимости от вида и исполнения заводской сети на 10 кВ (радиальная - кабельная, магистральная - токопроводами);

В зависимости от внутренней планировки цеха и расположения оборудования.

Принимаем ввод питания по колонне на плане цеха, расстояние от которой до ГПП является кратчайшим - А7. Схема электроснабжения цеха показана на рисунке 7.1.

Рисунок 7.1 - Схема питания электроприёмников цеха

8 Расчёт необходимой компенсирующей мощности, выбор компенсационного оборудования и его размещение в цеховой сети

Передача реактивной мощности вызывает дополнительные затраты на увеличение сечения проводников сетей и мощностей трансформаторов, создаёт дополнительные потери электроэнергии. Кроме того, увеличиваются потери напряжения за счёт реактивной составляющей, пропорциональной реактивной нагрузке и индуктивному сопротивлению, что снижает качество электроэнергии по напряжению.

Поэтому важное значение имеет компенсация реактивных нагрузок и повышения коэффициента мощности в системах электроснабжения предприятия. Под компенсацией подразумевается установка местных источников реактивной мощности, благодаря которой повышается пропускная способность сетей и трансформаторов, а также уменьшаются потери электроэнергии.

Тангенс угла сдвига фаз до компенсации реактивной мощности:

, (8.1)

где Qр.ц, Рр.ц- активная и реактивная мощности цеха, кВт, квар;

Суммарная мощность компенсирующего устройства:

, (8.2)

где tgцэ = 0,35 - коэффициент мощности, заданный системой, о. е

Qку = 844,06 (0,669 - 0,35) = 269,25 квар

В качестве источников реактивной мощности используем комплектные конденсаторные установки с размещением их на магистральных шинопроводах.

На каждый магистральный шинопровод устанавливаем конденсаторную установку «ВАРНЕТ» производства компании «Таврида-электрик»:

ВАРНЕТ-НС-, общей мощностью 2х130 кВАр=260 кВАр.

9 Уточнение расчётных нагрузок и мощности трансформаторов с учётом компенсации реактивной мощности

9.1 Уточнение мощности трансформаторов с учётом компенсации

Расчётная реактивная нагрузка после установки комплектных конденсаторных установок:

, (9.1)

.

Пересчитываем полную расчётную мощность:

(9.2)

Определяем расчётную мощность трансформатора :

С учётом компенсации выбираем трансформатор ТМЗ - 630/10. Паспортные данные трансформатора приведены в таблице 7.1.

Коэффициент загрузки:

9.2 Выбор магистральных шинопроводов

После уточнения расчётных нагрузок и мощности трансформаторов с учётом компенсации производим выбор магистральных шинопроводов по номинальному току трансформатора.

(9.5)

Используем магистральные шинопроводы ZUCCHINI серии MR. Основными преимуществами являются скорость, простота установки, надежность.

Выбираем магистральный шинопровод ZUCCHINI серии MR. Номинальный ток 1000 А.

Таким образом шинопроводы проходят проверку по току.

10 Выбор питающих кабелей

Кабельная линия, по которой трансформаторная подстанция получает питание, прокладывается в земле. Выбираем кабель на напряжение 10кВ марки ААШв кабель с алюминиевыми жилами, алюминиевой оболочкой, бумажной пропитанной изоляцией со шлангом из поливинилхлорида трёхжильный.

Выбор сечений жил кабелей 10кВ производится по трём критериям:

1) По нагреву;

2) По экономической плотности тока;

3) По термической стойкости к токам КЗ.

10.1 Выбор сечения кабеля по нагреву

Основное условие выбора кабеля по нагреву

Iр Iд.д. (10.1)

где Iд.д - длительно допустимая токовая нагрузка на кабель, А;

Iр - расчётный ток, А.

Согласно ПУЭ проводники должны удовлетворять требованиям в отношении предельно допустимого нагрева с учётом не только нормальных, но и послеаварийных режимов, режимов после ремонта. Т. к. цеховая двухтрансформаторная подстанция получает питание по двум кабелям и при отключении одного из них (в ремонтном или послеаварийном режимах) нагрузка другого возрастает, то

.

Принимаем трёхжильный кабель ААШв 3х16 мм с Iд.д = 75 А.

Iр = 48,55 А < Iд.д = 75 А.

10.2 Выбор сечения кабеля по экономической плотности тока

Определяем экономическую плотность тока для кабеля ААШв в зависимости от продолжительности использования максимума нагрузки по данным ПУЭ. При ТМ от 3000 до 5000 ч/год для предприятия, работающего в три смены:

jэк =1,4 А/мм2 .

Экономически выгодное сечение:

Fэк = Iр / jэк, (10.2)

где Iр - расчётный ток линии, который принимается из условий нормальной работы и при его определении не учитывается увеличение тока в линии при авариях или ремонтах в каком-либо элементе сети.

Fэк = 27,74/1,4 = 19,81 мм2

Ближайшее стандартное сечение 16 мм2.

10.3 Выбор сечения кабеля по термической стойкости

Сечение, обеспечивающее термическую устойчивость проводника к току короткого замыкания, определяется по выражению:

где б - расчётный коэффициент (для кабелей с алюминиевыми жилами б = 12);

I?- установившийся ток короткого замыкания, кА;

tср - возможное время прохождения тока через кабель (складывается из времени действия релейной защиты и времени отключения выключателя), взято из задания.

Ближайшее большее сечение 120 мм2.

На основании расчётов для питания цеховой двухтрансформаторной подстанции принимаем два кабеля марки ААШв 3х120 мм2 .

11 Построение карты селективности защиты

Строим карту селективной защиты для наиболее электрически удаленного электроприемника - электродвигателя насоса мощностью 30 кВт.

11.1 Расчет токов трехфазного короткого замыкания

Расчётная схема и схема замещения представлена на рисунках 11.1 и 11.2. Определяем сопротивления элементов схемы.

Рисунок 11.1 - расчетная схема электроснабжения насоса

Рисунок 11.2 - схема замещения электроснабжения насоса

11.1.1 Определение сопротивления элементов схемы

Определяем индуктивное сопротивление системы, приведённое к стороне 0,4 кВ.

, (11.1)

Определяем активное и индуктивное сопротивления высоковольтной кабельной линии длиной l = 200 м и S = 3х120 мм2:

, (11.2)

, (11.3)

где R0 - удельное активное сопротивление высоковольтной кабельной линии;

Х0 - удельное реактивное сопротивление высоковольтной кабельной линии;

L - длина высоковольтной кабельной линии.

Определяем активное сопротивление трансформатора ТМЗ-630/10:

Определяем полное сопротивление трансформатора:

Определяем реактивное сопротивление трансформатора:

Определяем активное и индуктивное сопротивление магистрального шинопровода, l = 24 м:

RШМА = R0 · l = 0,034 · 24 = 0,816 мОм; (11.7)

ХШМА = Х0 · l = 0,016 · 24 = 0,384 мОм. (11.8)

где R0 - удельное активное сопротивление магистрального шинопровода;

Х0 - удельное реактивное сопротивление магистрального шинопровода;

l - длина магистрального шинопровода.

Определяем активное и индуктивное сопротивление распределительного шинопровода, l = 35 м:

RШРА = R0 · l = 0,23 · 35 = 8.05 мОм; (11.9)

ХШРА = Х0 · l = 0,23 · 35 = 8.05 мОм. (11.10)

где R0 - удельное активное сопротивление распределительного шинопровода;

Х0 - удельное реактивное сопротивление распределительного шинопровода;

l - длина распределительного шинопровода.

Определяем активное и индуктивное сопротивление питающего провода

АВВГ (4х2.5), l = 8 м:

Rкл= R0 · l = 9.81 · 8 = 78.48 мОм; (11.11)

Хкл= Х0 · l = 0,096 · 8 = 0.768 мОм. (11.12)

где R0 - удельное активное сопротивление питающего кабеля;

Х0 - удельное реактивное сопротивление питающего кабеля;

l - длина питающего кабеля.

Переходные сопротивления согласно принимаются равными:

RА1 =3 0 мОм - переходное сопротивление для точки К1;

RА2 =25 мОм - переходное сопротивление для точки К2;

RА3 =15 мОм - переходное сопротивление для точки К3.

Расчёт начального действующего значения периодической составляющей тока трёхфазного короткого замыкания без учёта сопротивления электрической дуги производится по формуле:

где Uном - среднее номинальное линейное напряжение в сети, кВ;

RУ, ХУ - суммарные активное и индуктивное сопротивления до точки КЗ без учёта сопротивления электрической дуги, мОм.

Результаты расчетов суммарных сопротивлений сведем в таблицу 11.1.

Таблица 11.1 - Определение суммарных сопротивлений сети до точки К.З. и тока К.З. без учета сопротивления дуги

11.2 Расчёт токов однофазного короткого замыкания

В электрической сети напряжением до 1000 В под однофазным коротким замыканием подразумевается замыкание между фазным и нулевым проводниками в схеме электроснабжения. Поэтому величина тока однофазного замыкания зависит от величины фазного напряжения и сопротивления петли «фаза - нуль» от цехового трансформатора до расчётной точки КЗ. Схема замещения для расчета однофазного т.к.з. показана на рисунке 11.3

Расчёт однофазных токов КЗ проводим по выражению:

Где Uном - номинальное напряжение сети;

Rт.ф-0, Хт.ф-0 - сопротивления понижающих трансформаторов току однофазного КЗ, мОм;

Rнс.ф-0, Хнс.ф-0 - суммарные сопротивления низковольтной сети току однофазного КЗ, мОм;

Rп - переходное сопротивление (см. п.11.1).

Рисунок 11.3 - схема замещения для расчета однофазного т.к.з.

Определение сопротивления элементов схемы:

Сопротивления силового трансформатора ТМЗ-630/10 току однофазного короткого замыкания:

Rт.ф-0 = 10.2 мОм; ХТ.Ф-0 = 40.5 мОм.

Сопротивления магистрального шинопровода току однофазного короткого замыкания:

Rуд.ф-0 = 0,085 мОм/м; Худ.ф-0 = 0,013 мОм/м ;

Rшма ф-0 = Rуд.ф-0 · l;

Хшма ф-0 = Худ.ф-0 · l; (11.15)

Rшма ф-0 = 0,085 · 24 = 2.04 мОм; Хшма ф-0 = 0,013 · 24= 0,312 мОм.

Сопротивления распределительного шинопровода току однофазного короткого замыкания:

Rуд.ф-0 = 0,45 мОм/м; Худ.ф-0 = 0,45 мОм/м ;

R шра ф-0 = Rуд.ф-0 · l;

Хшра ф-0 = Худ.ф-0 · l; (11.16)

R шра ф-0 = 0,45 · 35 = 15.75 мОм; Хшра ф-0 = 0,45 · 35 = 15.75 мОм.

Сопротивления четырёхжильного провода АВВГ (4х2.5) току однофазного короткого замыкания:

Rуд.ф-0 = 25 мОм/м;

Худ.ф-0 = 0,2 3мОм/м ;

R кл ф-0 = Rуд.ф-0 · l;

Хкл ф-0 = Худ.ф-0 · l; (11.17)

R кл ф-0 = 25 · 8 = 200 мОм; Хкл ф-0 = 0,23· 8 = 1,84 мОм.

Расчет токов однофазного короткого замыкания сведем в таблицу 11.2.

Таблица 11.2 - Определение суммарных сопротивлений сети до точки К.З. и тока К.З. без учета сопротивления дуги

11.3 Карта селективности защиты

Проверку производим на примере подключения насоса (см. рисунок 11.1).

Автоматические выключатели выбираем из .

1) Автоматический выключатель QF1:

Рном = 8,5 кВт, Iном = 16,9 А.

Iном. выкл. > Iном, (11.18)

На основе условия нормального режима выбираем выключатель серии MS325-20, Iном=25 А, Iном. р.= 16-25 А.

Iсо = 10 · Iном. расц.= 10 · 25 = 250А; tсо = 0,02 c;

Iсо < IК1(3), Iсо < IК1(1), (11.20)

Определим ток уставки:

I6 = 6 · Iном. р= 6 · 18 = 108А; t6 = 8 c; (11.21)

Iсп = 1,35 · Iном. расц.= 1,35 · 18= 24.3 А; tсп = 6000 c ; (11.23)

Коэффициент чувствительности к токам однофазного К1:

где Iном. выкл. - номинальный ток выключателя;

Iном. расц. - номинальный ток расцепителя;

Iсп - ток срабатывания выключателя в зоне перегрузки;

tсп - время срабатывания выключателя в зоне перегрузки;

I6 - ток уставки;

t6 - время срабатывания уставки;

Iсо - ток срабатывания отсечки;

tсо - время срабатывания отсечки.

Заносим данные выключателя в таблицу 11.3.

2) Автоматический выключатель QF2:

Iраб = 156 А.

Iном. выкл. > Iраб

Выбираем выключатель ABB Tmax T1 , Iном = 160 А, Iном. р. = 160 А.

Определим ток срабатывания отсечки:

Iсо = 5 · Iном. расц.= 5 · 160 = 800А; tсо = 0,05 c;

Iсо < IК1(3), Iсо < IК1(1).

Определим ток уставки:

I6 = 6 · Iном. расц.= 6 · 160 = 960 А; t6 = 4 c.

Определим ток срабатывания выключателя в зоне перегрузки:

Iсп = 1,25 · Iном. расц.= 1,25 · 160 = 200 А; tсп = 1000 c;

Коэффициент чувствительности к токам однофазного К2:

Заносим данные выключателя в таблицу 11.3

3) Автоматический выключатель QF3:

Расчетный ток:

Выбираем выключатель ABB Emax E1B 1000 Iном = 1000 А, Iном. р. = 1000 А.

Определим ток срабатывания отсечки:

Iсо = 3 · Iном. расц.= 3 · 1000 = 3000А; tсо = 0,1 c;

Определим ток уставки:

I6 = 6 · Iном. расц.= 6 · 1000 = 6000 А; t6 = 4 c

Определим ток срабатывания выключателя в зоне перегрузки:

Iсп = 1,25 · Iном. расц.= 1,25 · 1000 = 1250 А; tсп = 1000 c;

Коэффициент чувствительности к токам однофазного КЗ:

Тип выключа-теля

I ном. выкл., А

I ном. расц., А

Зона срабатывания при перегрузке

Зона шестикратно-го тока

Зона отсечки

На рисунке 11.4 показано построение карты селективности защиты насоса.

12 Выбор аппаратуры ячейки КРУ на ГПП

Распределительный пункт 10 кВ располагается на ГПП предприятия и служит для распределения энергии между цехами и отдельными крупными потребителями, имеющимися на заводе, а также для выполнения коммутационных и защитных функций. На РП также располагаются контрольно-измерительные приборы (в виде амперметров, вольтметров, счетчиков), защитная аппаратура в виде автоматов, предохранителей и аппараты управления (реле, автоматика, сигнализация, а также трансформаторы тока), поэтому следует при выборе типа ячеек КРУ и их аппаратуры внимательно относиться к их параметрам, так как надежность работы этого оборудования играет важную роль в системе электроснабжения всего предприятия.

Распределительный пункт 10кВ выполняется с помощью шкафов КРУ. Выберем шкафы КРУ для присоединения к ним двух линий, отходящих к трансформаторной подстанции проектируемого цеха. Существенным отличием по выбору КРУ являются коммутационные ресурсы, трудозатраты на эксплуатацию выключателей и собственное время включения и отключения выключателей. Ячейка КРУ со всей аппаратурой выбирается и проверяется по следующим показателям:

а) номинальному напряжению

Uном Uсети; (12.1)

б) номинальному току

Iном Iрасч; (12.2)

в) динамической устойчивости

iуд.ск. iуд.расч; (12.3)

г) термической устойчивости

Iтерм.ст. I; (12.4)

д) отключающей способности

Iотк.ном. I. (12.5)

РУ-10 кВ ГПП выполняется с помощью шкафов КРУ. Выберем шкафы КРУ для присоединения к нему двух линий, отходящих к трансформаторной подстанции цеха.

Ударный ток к.з. определяется по выражению:

где I” - ток короткого замыкания на шинах источника питания;

kу - ударный коэффициент.

где ia,t - апериодическая составляющая тока к.з.;

tотк = tсв + tрз = 0,07 + 0,3 = 0,37с - время отключения к.з.;

tсв=0,07 - собственное время отключения выключателя ;

tрз=0,3 - время срабатывания релейной защиты (по заданию).

Та=0,1 с - постоянная времени затухания апериодической составляющей тока короткого замыкания.

Тепловой импульс тока к.з.:

Выбираем 2 шкафа (для присоединения двух отходящих линий) серии КРУ-104М, Uном = 10.5кВ, Iном.шкафа = 630 А со встроенными вакуумными выключателями ВВЭ-10-31,5/630У3 и с трансформаторами тока типа ТЛК-10У3.

Выбор аппаратов оформим в виде таблицы 12.1.

Таблица 12.1 - Выбор аппаратуры ячейки КРУ

Наименование и тип аппарата

Расчётные данные

Условие выбора

Технические характеристики

Проверка условия

Uсети =10 кВ

Uсети? Uном

Uном = 10,5 кВ

Iном = 630 А

10 кВ < 10,5 кВ

51 А < 630 А

Выключатель ВВ/TEL-10-20/630У3

Uсети =10 кВ

Uсети? Uном

Вк? Iтерм·tтерм

Uном = 10 кВ

Iном = 630 А

iдин = 80 кА

Iтерм2·tтерм =

31,5х3=2977А2·с

10 кВ = 10 кВ

51 А < 630 А

63 кА < 80 кА

160А2·с < 2977 А2·с

Трансформатор тока

Uсети =10 кВ

Uсети? Uном

Вк? Iтерм·tтерм

Uном = 10 кВ

Iном = 100 А

iдин = 81 кА

Iтерм2·tтерм =

1,52·3=2977А2·с

10 кВ = 10 кВ

51 А < 100 А

63 кА < 81 кА

160А2·с < 2977 А2·с

13 Расчёт показателей качества электрической энергии

Электрическая энергия, вырабатываемая источниками питания и предназначенная для работы электроприёмников, должна иметь такие качественные показатели, которые определяют надёжность и экономичность их работы. Качественные показатели электроэнергии нормируются государственными стандартами; на эти нормы ориентированы технические условия работы электроприёмников, выпускаемых промышленностью.

Расчет производится для таких показателей качества электроэнергии как отклонение напряжения и несинусоидальность напряжения. Проведение расчета необходимо для того, чтобы установить, насколько эти показатели соответствуют установленным на них нормам. Нормирование показателей необходимо вследствие негативного влияния на работу других электроприемников:

Отклонение напряжения создают при своей работе любые электроприемники, т.к. изменение группового графика нагрузки в течении суток приводит к изменению потерь напряжения элементов электрических сетей. Отклонение напряжения может привести к изменению производительности данной установки или агрегата, к браку продукции в данной установке или агрегате, к изменению потребления активной и реактивной мощности, к изменению потерь активной мощности, а так же к изменению срока службы самого электроприемника и изоляции проводников, питающих его;

Колебания напряжения создают при своей работе электроприемники с импульсными и резкопеременными режимами работы (эл.сварочные установки, дуговые печи). Колебания напряжения наибольшее влияние оказывает на освещение и на различную электронную технику (ПК, телевизоры,и т.д.). На электродвигатели и электротехнологические установки колебание напряжения практически не оказывает влияния, т.к. длительность колебаний небольшая. Колебание напряжения сказывается на релейной защите;

Подобные документы

    Характеристика потребителей цеха по режиму нагрузки, категории бесперебойности. Подбор двигателей, защитной аппаратуры для электроприемников. Расчёт электрических нагрузок цеха и сопротивлений элементов сети, выбор мощности цеховых трансформаторов.

    курсовая работа , добавлен 14.01.2018

    Определение электрических нагрузок исследуемого цеха и фермы в целом с применением ЭВМ. Выбор пусковой и защитной аппаратуры электроприемников. Разработка силовой сети цеха с выбором силовых распределительных шкафов. Расчет осветительной нагрузки цеха.

    курсовая работа , добавлен 27.10.2012

    Выбор напряжения и режима нейтрали для цеховой распределительной сети. Расчет электрических нагрузок цеха с учетом освещения, мощности компенсирующих устройств. Выбор местоположения цеховой трансформаторной подстанции. Нагрузки на участки цеховой сети.

    курсовая работа , добавлен 07.04.2015

    Характеристика потребителей электроэнергии и определение категории электроснабжения. Расчёт ответвлений к электроприёмникам, выбор пусковой и защитной аппаратуры. Определение нагрузок узлов электрической сети и всего цеха. Выбор рода тока и напряжения.

    курсовая работа , добавлен 21.03.2013

    Расчет категорийности надежности электроснабжения объекта. Три основные категории электроприемников. Выбор защитной аппаратуры для всех участков сети. Сводная ведомость нагрузок цеха. Принципиальная однолинейная схема электроснабжения сварочного цеха.

    контрольная работа , добавлен 06.06.2011

    Расчет силовой нагрузки цеха. Выбор местоположения цеховой трансформаторной подстанции. Расчет токов трехфазного и однофазного короткого замыкания. Схема распределительной сети питания электроприемников. Согласование и проверка защитной аппаратуры.

    курсовая работа , добавлен 22.12.2012

    Электрические нагрузки шлифовального цеха химического комбината, определение категории электроснабжения. Выбор рода тока, напряжения. Расчет распределительной сети, коммутационно-защитной аппаратуры. Ремонт электрооборудования трансформаторной подстанции.

    курсовая работа , добавлен 28.10.2013

    Характеристика потребителей электроэнергии и определение величины питающего напряжения. Выбор электродвигателей, пусковой и защитной аппаратуры. Расчет электрических нагрузок, компенсация реактивной мощности, создание однолинейной схемы электроснабжения.

    курсовая работа , добавлен 20.01.2010

    Технология производства и характеристика ремонтно-механического цеха. Выбор рода тока и величины питающего напряжения. Определение мощности приводных электродвигателей токарного винторезного станка. Расчет и выбор пусковой и защитной аппаратуры.

    курсовая работа , добавлен 23.01.2011

    Характеристика потребителей электроэнергии и определение категории электроснабжения. Выбор величины питающего напряжения, схема электроснабжения цеха. Расчет электрических нагрузок, силовой сети и трансформаторов. Выбор аппаратов защиты и автоматики.

При проектировании сети электроснабжения крупных потребителей, в число которых входят также и отдельные цеха предприятий, важно учитывать достаточно много условий. Исходные данные для проектирования зависят от многих факторов, начиная от специализации предприятия и заканчивая географическим положением, поскольку нужно учитывать не только мощность, потребляемую оборудованием, но и расходы на освещение и теплоснабжение. Грамотно и рационально выполненный проект электроснабжения цеха существенно влияет на надежность работы установленного оборудования при минимально допустимом потреблении электроэнергии. Электроснабжение предприятия должно обеспечивать безопасные условия труда и не иметь вредного влияния на окружающую среду.

Наиболее сложный и трудоемкий этап проектирования внутреннего электроснабжения - это определение и расчет потребляемой мощности нагрузки. В основе расчета лежат данные, как по паспортной потребляемой мощности оборудования, так и режимы его работы. Учитываются все факторы, включая реактивную мощность, требующую компенсации при помощи специального оборудования – компенсаторов реактивной мощности для обеспечения равномерной нагрузки трехфазной сети.

Отдельной графой в определении мощности идет расчет системы освещения цеха, позволяющий выбрать и оптимизировать расположение и типы светильников, в зависимости от требований к освещенности различных участков. Наличие или отсутствие центрального отопления может потребовать введение в число потребителей сезонное подключение систем электроотопления.

Большинство цехов промышленного предприятия требуют проектирования систем вентиляции.

Указанные условия показывают, насколько может быть трудоемким расчет системы электроснабжения на первом этапе проектирования, особенно, если речь идет об электропитании цеха нестандартного оборудования.

На втором этапе проектирования, используя данные первого этапа и масштабный план размещения оборудования, выбирается тип распределительной сети. При этом, необходимо учитывать такие факторы:

  • Расположение приемников электроэнергии на территории цеха;
  • Степень ответственности приемников (требования к надежности электропитания);
  • Режим работы.

От выбранной схемы распределительной сети зависит расход материалов линий электропередач, расположение трансформаторных подстанций, распределительных щитов.


Используются такие виды распределительных сетей:

  • Радиальные схемы;
  • Магистральные;
  • Комбинированные.

При радиальной схеме каждый приемник питается от отдельной линии, проложенной от распределительного щита. Такой вид сетей используется для подключения мощных приемников, расположенных на достаточном удалении один от другого, а подстанция находится вблизи геометрического центра нагрузки.

Магистральная схема характеризуется тем, что применяется при сосредоточенной нагрузке, когда приемники энергии сгруппированы последовательно и на небольшом расстоянии друг от друга. В таком случае они подключаются к единой магистрали, проложенной от трансформаторной подстанции или распределительного щита.

К комбинированной относится магистральная схема с сосредоточенными нагрузками, когда от распределительно щита отходит несколько магистралей, каждая для своей группы нагрузок. Комбинированной сетью можно назвать и такое построение радиальной, когда мощные потребители получают питание непосредственно от питающей подстанции, а менее мощные объединены в группы и получают питание от распределительных щитов.

Именно комбинированные сети получили наибольшее распространение, так как они позволяют наиболее оптимально использовать материальные ресурсы без снижения надежности. На данном этапе также учитываются требования приемников к надежности питания и закладываются схемы резервирования подачи электроэнергии.


Схемы распределения сетей: а) радиальная; б, в) магистральная.

Третий этап разработки проекта основывается на двух предыдущих и предполагает расчет необходимого количества, мощности распределительных устройств, подстанций, компенсаторов реактивной мощности.

Расчет мощности приемников электрической энергии

Мощность нагрузки на питающую сеть во многом зависит от вида производства. К примеру, оборудование цеха металлорежущих станков комбината металлообработки при одинаковом количестве устройств, потребляет гораздо большую мощность, чем станки цеха обработки древесины. Таким образом, электроснабжение механического цеха тяжелого машиностроения требует более строгого подхода в отношении выбора количества и мощности преобразовательных подстанций и линий электропередач.

При проектировании следует учитывать суточный график работы потребителей, и в основе расчетов должна лежать средняя потребляемая мощность в часы максимальной нагрузки. Если в расчет брать суммарную мощность потребителей, то большую часть времени трансформаторы подстанции будут работать в недогруженном режиме, что приведет к лишним финансовым затратам на обслуживание питающего оборудования.

Считается, что оптимальный режим работы трансформатора должен составлять работу на 65 – 70% от номинальной мощности.

Требуемое сечение линий электропитания также выбирается с учетом средней потребляемой мощности, поскольку приходится учитывать допустимую плотность тока, нагрев и потери мощности.

Точно также на данном этапе должны учитываться характеристики потребления реактивной составляющей мощности, для рационального использования компенсаторов. Неправильное размещение и параметры компенсаторов приведут к перерасходу энергии, неправильному учету, а, главное, к увеличенным потерям и нагрузке на линии электропередач.

Данная задача ставится в первую очередь там, где в наличии имеется много мощных потребителей с индуктивной нагрузкой. Самым распространенным примером являются асинхронные двигатели, которые входят в большинство станочного оборудования.

Второй этап проектирования

Выбор типа распределительной сети частично определяется характеристикой оборудования по категорийности приемников. Различают три категории по требованиям к надежности электропитания:

  1. Первая категория – перерыв в подаче питания приводит к угрозе безопасности, авариям, полному срыву технологического процесса. К данной категории относятся большое количество оборудования машиностроительного и металлообрабатывающего профиля, а также предприятия серийного производства на основе конвейера, например, машиностроительного профиля.
  2. Вторая категория – нарушение производственного цикла, перебои в выпуске продукции, не приводящие к серьезным экономическим последствиям. Большинство производств относятся именно к этой категории. Здесь можно указать оборудование ремонтно - механического цеха (РМЦ).
  3. К третьей категории относятся потребители с более щадящими требованиями к электропитанию, чем первых двух категорий. Сюда можно отнести большинство производственного оборудования швейного цеха, и некоторые цеха металлоизделий.

Оборудование, относящееся к первой категории, требует выполнять проектирование электроснабжения с учетом взаимного резервирования нескольких (обычно двух) источников внешнего электрического снабжения.

Оптимальное сочетание надежности электроснабжения при минимальных затратах достигается правильным выбором системы электроснабжения в соответствии с категорийностью оборудования и расположением оборудования на площади производственного цеха.

В большинстве случаев наиболее рациональной является комбинированная магистральная схема с сосредоточенными нагрузками. Оборудование кузнечного цеха или сварочного цеха имеет свои особенности по энергопотреблению и требует прокладки отдельных питающих магистралей, а электроснабжение участка механосборочного цеха, напротив, вполне возможно выполнить по магистральной схеме. И когда в цехе установлено несколько поточных линий, то без нескольких магистралей питания не обойтись. То же необходимо учитывать, когда выполняется расчет электроснабжения инструментального цеха.


Отдельные линии питания закладываются на систему освещения и вентиляции, будь то электропроект деревообрабатывающего комбината или проект электрики авиазавода авиационного предприятия.

Заключительный этап

На основании данных предыдущих расчетов составляется электротехнический проект, состоящий из нескольких комплектов документов. Вначале разрабатывается рабочий проект, который в процессе выполнения работ может корректироваться в зависимости от местных условий и в конце работ будет отличаться от расчетного. Одним из основных документов при проектировании электроснабжения является однолинейная схема электроснабжения цеха. Чертеж однолинейной схемы позволяет быстро сориентироваться в тонкостях и особенностях электроснабжения цеха.

Подведем итоги

Проектирование системы электроснабжения отдельного цеха или целого завода является одним из самых ответственных мероприятий, выполнение которых возможно только специализированными организациями, имеющими право на такие работы. Не имеет смысла терять время на разработку проекта самостоятельно. Как бы он не был выполнен грамотно и точно, он все равно не получит согласования в организациях энергосбыта. Заказав типовой проект схемы внутрицехового электроснабжения до 1000 в или более у лицензированной организации, можно не беспокоится о безопасности и законности всех мероприятий по строительству и работе электрооборудования. Готовый проект будет иметь все необходимые допуски и согласования, начиная от эскиза и заканчивая полностью скорректированной документацией при сдаче объекта в эксплуатацию.

Заказать проект можно в компании «Мега.ру». На сайте компании имеется множество статей, раскрывающих суть и тонкости проектирования, с примерами проектов. Особое внимание следует обратить на статью , где подробным образом разъясняется, какие существуют стадии выполнения проекта электрики.

Но все же, гораздо больше интересующей информации можно получить, обратившись за консультацией непосредственно в компанию. В разделе указано, как можно связаться с нашими специалистами и получить ответы на все вопросы.