Коэффициент общей полноты судна. Главные размерения и коэффициенты полноты. Коэффициент полноты ассортимента

Общее представление о форме наружной поверхности корпуса дает сечение его тремя взаимно перпендикулярными плоскостями (рисунок 5.1).

Вертикальная плоскость, идущая вдоль судна по середине его ширины и разделяющая судно на две симметричные половины (левый и правый борт), называется диаметральной плоскостью (ДП). Поверхность воды в спокойном состоянии, которая пересекает наружную обшивку судна, несущего все полагающиеся по роду его службы грузы, образует плоскость грузовой ватерлинии (ГВЛ). Эта плоскость отделяет подводную часть судна от надводной части. Поперечная плоскость, рассекающая судно по середине его длины, называется плоскостью мидель - шпангоута.

Рисунок 5.1 Расположение основных плоскостей. 1-плоскость мидель-шпангоута; 2- диаметральная плоскость; 3 - плоскость грузовой ватерлинии

Ряд плоскостей, параллельных ДП, образуют на поверхности судна линии батоксов (рисунок 5.2).

Рисунок 5.2 Линии пересечения наружной поверхности судна плоскостями, параллельными основным плоскостям: 1 - батоксы; 2 - форштевень; 3 - ватерлиния; 4 - шпангоуты; 5 - ахтерштевень.

Пересечения наружной обшивки с горизонтальными плоскостями образуют промежуточные ватерлинии, а с вертикально-поперечными - шпангоуты. При совмещении всех перечисленных сечений на одном чертеже получится обычная для судостроителей форма представления поверхности судна - теоретический чертеж (рис.3).

Исчерпывающее представление о форме корпуса судна дает его теоретический чертеж (рисунок 5.3). Он состоит из трех проекций, на каждой из которых изображаются сечения корпуса плоскостями, параллельными рассмотренным выше, -- ДП, пл. МШ и ОП. На теоретическом чертеже представляется теоретическая поверхность корпуса без учета наружной обшивки и выступающих частей.

Рисунок 5.3 Теоретический чертеж судна

Основные габаритные размеры корпуса принято называть главными размерениями. Это L -- длина судна; В -- ширина; Н -- высота борта; Т -- осадка. Первые три неизменны и относятся к геометрическим характеристикам корпуса в целом, последняя -- осадка -- может изменяться в широких пределах и определяет погруженный (подводный объем) судна. Обычно, когда говорят о главных размерениях судна, то принимают осадку по расчетную, или конструктивную, ватерлинию, соответствующую проектной загрузке судна.

Длина тоже должна быть конкретизирована. Различают длину между перпендикулярами L, по КВЛ Lквл, максимальную Lmах. Первые две близки между собой, последняя является габаритной. При изучении мореходных качеств судна, строго говоря, следует оперировать с длиной по ватерлинии, однако часто вместо нее принимают однозначно определенную величину -- Lхх.

Наиболее крупные современные суда достигают весьма внушительных размеров: их длина может превышать 400 м, ширина 60, а осадка в грузу составлять около 30 м.

Обобщенные характеристики формы. Наряду с теоретическим чертежом представление о форме корпуса судна дают обобщенные безразмерные характеристики -- соотношения главных размерений и коэффициенты полноты. От этих характеристик во многом зависят как мореходные, так и другие качества судна.

Основные соотношения главных размерений следующие: . Отношение, или, как его иногда называют, относительная длина, в значительной степени определяет ходовые качества: чем оно больше, тем относительно быстроходнее судно. У современных водоизмещающих судов эта величина колеблется в диапазоне. Нижний предел характерен для некоторых буксирных судов, верхний присущ высокоскоростным военным кораблям. Естественно, имеют место и исключения, так, например, некоторые спортивные лодки для академической гребли имеют > 25.

Отношение в основном влияет на остойчивость и качку. Чем оно больше, тем лучше с точки зрения остойчивости, хотя качка при этом делается более порывистой. Для современных морских судов.

Отношение - влияет на управляемость: его увеличение повышает устойчивость на курсе и ухудшает поворотливость.

Отношение -определяет остойчивость на больших углах наклонения и непотопляемость судна. Рост благоприятно влияет на оба эти качества.

Отношение влияет на прочность корпуса, чем выше это отношение, тем сложнее обеспечить общую прочность судна.

Основных независимых коэффициентов полноты три. Это коэффициент полноты площади ватерлинии

где S- площадь КВЛ;

коэффициент полноты мидель-шпангоута

где - площадь сечения мидель-шпангоута ниже ВЛ

коэффициент общей полноты

где V -- объем подводной части корпуса или объемное водоизмещение.

Как следует из (5.1) - (5.3), все коэффициенты полноты - суть отношения площадей (объема) соответствующих элементов к площадям (объему) описанных прямоугольников (параллелепипедов). Все эти коэффициенты меньше единицы, их численные значения для морских судов лежат в пределах: . Меньшие величины характерны для более быстроходных судов; верхние границы отвечают тихоходным судам с очень полными обводами (образованиями).

В некоторых расчетах теории корабля удобнее пользоваться производными от основных, дополнительными коэффициентами продольной ф и вертикальной полноты, физическая интерпретация которых ясна.

Пример 5.1. Некоторые из рассматриваемых теоретических положений и выводов будем иллюстрировать примерами. Большую их часть отнесем к одному судну, которому дадим имя «Инженер». Выбор названия не случаен: во-первых, первоначальный смысл слова инженер -- изобретатель, созидатель, во-вторых, инженер -- это основная движущая сила научно-технического прогресса, плоды которого еще не столь весомы, как хотелось; в-третьих, цель настоящей книги -- внести посильную лепту в превращение студента в квалифицированного инженера.

Итак, задано многоцелевое сухогрузное судно «Инженер», боковой вид которого приведен на рисунок 5.4, а основные характеристики таковы:

L mах = 181 м; V = 28700 м 3 ;

L ++ = 173 м; D = 29400 т;

В = 28,2 м; G = 288000 кН;

Т = 9,5 м; S = 3700 м 2 ;

Н = 15,1 м; щ мш = 261м 2 .

Судно имеет носовой бульб, машинное отделение сдвинуто в корму (промежуточное положение машинного отделения МО). Система набора комбинированная -- верхняя палуба и двойное дно набраны по продольной системе, борта по поперечной

Найдем соотношения главных размерений и коэффициенты полноты судна:

Коэффициент общей полноты по (5.3)

Коэффициент полноты площади ВЛ по (5.1)

Коэффициент полноты мидель-шпангоута по (5.2)

Рисунок 5.4 Судно «Инженер»

Величины коэффициента общей полноты и отношение -- дают основание полагать, что «Инженер» имеет достаточно острые обводы и относится к среднескоростным транспортным судам.

Элементы теоретического чертежа. В расчеты по теории корабля закладываются различные характеристики формы корпуса. К основным элементам теоретического чертежа относят:

  • -- объемное водоизмещение V;
  • -- координаты центра величины х с, z c ;
  • -- площадь ватерлинии S;
  • -- абсцисса центра тяжести площади ВЛ х F ;
  • -- центральные моменты инерции площади ВЛ I Х и Iу;
  • -- коэффициенты полноты б,в,д.

Центром величины называют центр тяжести (центр масс) подводного объема корпуса (объемного водоизмещения).

Строевая по ватерлиниям -- это зависимость площади ватерлинии от осадки, в силу она характеризуем и распределение объема в функции от осадки. Большинство современных транспортных судов имеет плоское днище, в этом случае зависимость S(Т) не исходит из начала координат (рисунок 5.5). Очевидно, что площадь, ограниченная строевой по ВЛ и осью ординат, -- суть объемное водоизмещение при заданной осадке Т. Строевая по ВЛ широко используется при решении задач о приеме и расходовании малого груза.

Грузовой размер представляет собой зависимость водоизмещения от осадки. На этот график, кроме объемного водоизмещения V, определенного по теоретическому чертежу, наносят еще и водоизмещение с учетом обшивки и выступающих частей V i , а также и массовое водоизмещение D (рисунок 5.6). Грузовой размер, в частности, используется при решении задач приема и снятия большого груза.

Рисунок 5.5 Строевая по ватерлиниям

Рисунок 5.6 Грузовой размер

Масштаб Бонжана представляет совокупность зависимостей площадей всех теоретических шпангоутов от их погружения щ(z). Величины указанных площадей определяются: в виде

Строится масштаб Бонжана на трансформированном контуре сечения корпуса диаметральной плоскостью. Трансформация заключается в том, что для удобства использования, линейные масштабы вдоль осей ох и оу выбираются различными (рисунок 5.7). От вертикальных линий, следов соответствующих теоретических шпангоутов откладывают доведенные до высоты верхней палубы значения площадей шпангоутов щ(z).

С помощью масштаба Бонжана можно определить водоизмещение по любую, в том числе и наклонную (для судна, сидящего с дифферентом), ватерлинию. Масштаб Бонжана используется при расчетах непотопляемости, продольного спуска судна, а также для других целей. Строевая по шпангоутам характеризует распределение объемов по длине судна и представляет собой зависимость площади шпангоута от его расположения вдоль оси ох при заданной осадке (рисунок 5.8).

Рисунок 5.7 Масштаб Бонжана

Рисунок 5.8 Строевая по шпангоутам

Строевая по шпангоутам может быть построена с помощью масштаба Бонжана для любой ватерлинии. Очевидно, что площадь, заключенная между строевой и осью ох, суть объемное водоизмещение. Строевая по шпангоутам, в частности, используется при расчете моментов, изгибающих судно.

Остойчивость и метацентрическая высота. Судно, яхта подвержены действию сил и моментов сил, стремящихся наклонить их в поперечном и продольном направлениях. Способность судна противостоять действию этих сил и возвращаться в прямое положение после прекращения их действия называется остойчивостью. Наиболее важной для яхты является поперечная остойчивость.

Когда судно плавает без крена, то силы тяжести и плавучести, приложенные соответственно в ЦТ и ЦВ, действуют по одной вертикали. Если при крене экипаж либо другие составляющие массовой нагрузки не перемещаются, то при любом отклонении ЦТ сохраняет свое первоначальное положение в ДП точка G на рисунке вращаясь вместе с судном.

В то же время вследствие изменившейся формы подводной части корпуса ЦВ смещается из точки Со в сторону накрененного борта до положения C1. Благодаря этому возникает момент пары сил D и gV с плечом l, равным горизонтальному расстоянию между ЦТ и новым ЦВ яхты. Этот момент стремится возвратить яхту в прямое положение и потому называется восстанавливающим.

При крене ЦВ перемещается по кривой траектории C0C1, радиус кривизны г которой называется поперечным метацентрическим радиусом, r соответствующий ему центр кривизны М - поперечным метацентром. Величина радиуса r и соответственно форма кривой C0C1 зависят от обводов корпуса. В общем случае при увеличении крена метацентрический радиус уменьшается, так как его величина пропорциональна четвертой степени ширины ватерлинии.

Очевидно, что плечо восстанавливающего момента зависит от расстояния - возвышения метацентра над центром тяжести: чем оно меньше, тем соответственно меньше при крене и плечо l. На самой начальной стадии наклона величины GM или h рассматривается судостроителями как мера остойчивости судна и называется начальной поперечной метацентрической высотой. Чем больше h, тем необходима большая кренящая сила, чтобы наклонить яхту на какой-либо определенный угол крена, тем остойчивее судно. На крейсерско-гоночных яхтах метацентрическая высота составляет обычно 0,75-1,2 м; на крейсерских швертботах-0,6-0,8 м.

По треугольнику GMN легко установить, что восстанавливающее плечо.

Восстанавливающий момент, учитывая равенство gV и D, равен:

Таким образом, несмотря на то что метацентрическая высота изменяется в довольно узких пределах для яхт различных размерений, величина восстанавливающего момента прямо пропорциональна водоизмещению яхты, следовательно, более тяжелое судно оказывается в состоянии выдержать кренящий момент большей величины.

Восстанавливающее плечо можно представить как разность двух расстояний:

lф - плеча остойчивости формы и lв-плеча остойчивости веса. Нетрудно установить физический смысл этих величин, так как lв определяется отклонением при крене линии действия силы веса от первоначального положения точно над C0, а lв - смещением на подветренный борт центра величины погруженного объема корпуса. Рассматривая действие сил D и gV относительно Со, можно заметить, что сила веса D стремится накренить яхту еще больше, а сила gV, наоборот,-выпрямить судно.

По треугольнику CoGK можно найти, что, где СоС- возвышение ЦТ над ЦБ в прямом положении яхты. Таким образом, для того чтобы уменьшить отрицательное действие сил веса, необходимо по возможности понизить ЦТ яхты. В идеальном случае ЦТ должен бы расположиться ниже ЦВ, тогда плечо остойчивости веса становится положительным и масса яхты помогает ей сопротивляться действию кренящего момента.

Однако только немногие яхты имеют такую характеристику: углубление ЦТ ниже ЦВ связано с применением очень тяжелого балласта, превышающего 60% водоизмещения яхты, чрезмерным облегчением конструкции корпуса, рангоута и такелажа. Эффект, аналогичный снижению ЦТ, дает перемещение экипажа на наветренный борт. Если речь идет о легком швертботе, то экипажу удается сместить общий ЦТ настолько, что линия действия силы D пересекается с ДП значительно ниже ЦВ и плечо остойчивости веса получается положительным.

У килевой яхты благодаря тяжелому балластному фальшкилю центр тяжести находится достаточно низко (чаще всего-под ватерлинией или слегка выше нее). Остойчивость яхты всегда положительная и достигает максимума при крене около 90°, когда яхта лежит парусами на воде. Разумеется, такой крен может быть достигнут только на яхте с надежно закрытыми отверстиями в палубе и с самоотливным кокпитом. Яхта с открытым кокпитом может быть залита водой при гораздо меньшем угле крена (яхта класса «Дракон», например, при 52°) и пойти ко дну не успев выпрямиться.

У мореходных яхт положение неустойчивого равновесия наступает при крене около 130°, когда мачта уже находится под водой, будучи направленной вниз под углом 40° к поверхности. При дальнейшем увеличении крена плечо остойчивости становится отрицательным, опрокидывающий момент способствует достижению второго положения неустойчивого равновесия при крене 180° (вверх килем), когда ЦТ оказывается расположенным высоко над ЦВ достаточно небольшой волны, чтобы судно приняло вновь нормальное положение-вниз килем. Известно немало случаев, когда яхты совершали полный оборот на 360° и сохраняли свои мореходные качества.

Строевые по шпангоутам и ватерлиниям. Для характеристики распределения сил водоизмещения по длине судна строят специальную эпюру, называемую строевой по шпангоутам. Для построения этой эпюры горизонтальная линия, выраженная в принятом масштабе теоретическую длину судна, делится на n одинаковых частей, равных числу шпаций на теоретическом чертеже судна.

На перпендикулярах, восстановленных в точках деления, откладывают в определенном масштабе величины площадей погруженных частей соответствующих шпангоутов и концы этих отрезков соединяют плавной линией. Площадь строевой по шпангоутам равна объему водоизмещения судна.

При отсутствии теоретического чертежа объемное водоизмещение судна можно приближенно определять по его главным размерениям:

V= k*L*B*T,
где L, B, T — соответственно длина, ширина и осадка судна; k — коэффициент полноты водоизмещения или общий коэффициент полноты.Значения коэффициента полноты k для различных типов судов принимаются по справочным данным.

Строевая по шпангоутам.

Так как центр величины судна находится в центре тяжести подводной части судна, а площадь строевой выражает собой объем подводной части, то абсцисса центра тяжести строевой по шпангоутам равна абсциссе центра величины судна.

Аналогичная эпюра, характеризующая распределение сил водоизмещения по высоте судна, называется строевой по ватерлинии.

Строевая по ватерлиниям.

Площадь строевой по ватерлиниям также равна объемному водоизмещению судна, а ордината ее центра тяжести определяет положение центра величины судна по его высоте.

Если учесть свойства строевых по шпангоутам и ватерлиниям, то определение местоположения центра величины судна сведется к вычислению абсциссы центра тяжести строевой по шпангоутам и ординаты центра тяжести строевой по ватерлиниям.

Вычисление площади погруженной части шпангоута методом трапеции. Для расчета крена и дифферента необходимо, кроме массы и положения ЦТ судна, знать eгo объемное водоизмещение и положение центра величины, ЦВ, который является центром тяжести объема воды, вытесненного корпусом судна. Простейшим способом расчета этих величин является построение строевой по шпангоутам .

В качестве базы для построения этой кривой служит линия ДП на полушироте теopeтическoгo чертежа, при чем линии теоретических шпангоутов продлеваются вниз. На каждой из этих линий в определенном масштабе следует отложить погруженную площадь соответствующего шпапгоута. Для остроскулых судов плоскодонныx или имеющих килеватость, рассчитать площадь шнаигоута нe представляет труда: достаточно разделить eгo на простые геометрические фигуры прямоугольники, треугольники, трапеции.

Этот же принцип можно применить и для расчета площадей шпангоутов круглоскулых корпусов, но более точный результат дает способ трапеций . Сущность eгo состоит в следующем. Если фигуру, ограниченную кривой линией, разделить равноотстоящими прямыми на достаточно большое число равных частей, то площадь каждой части можно вычислить как для трапеции:

Суммируя затем площади всех трапеций, можно получить площадь всей фигуры как сумму площадей всех трапеций:

Таким образом, для вычисления площади шпангоута необходимо найти сумму всех ординат yi по ватерлиниям за вычетом полусуммы ординат крайних ватерлиний – при ОП и КВЛ, и умножить результат на расстояние DT между ватерлиниями и на 2, так как расчет велся для половины шпангоута. Подобный же принцип может быть использован и для вычисления площади любой ватерлинии, которая делится теоретическими шпангоутами на равные по длине участки DL.

Найдя на проекции корпус погруженные площади каждого шпангоута Wi их откладывают вниз от ДП в определенном масштабе, затем проводят плавную кривую. Нетрудно сообразить, что если, сложить, например ординаты площадей шп. 5 и 6 и умножить на расстояние между шпангоутами DI, то получится объем части корпуса как усеченной пирамиды, имеющей основания в виде погруженных в воду частей щп.5 и 6. Следовательно, располагая cтроевой по шпангоутам, можно вычислить водоизмещение использовав тот же принцип трапеций,

Здесь все величины должны быть выражены в м и м2. Пользуясь правилом трапеций, можно найти и положение центра величины – ЦВ, поскольку он должен совпадать с положением центра тяжести строевой по ватерлинии относительно миделя. Для этого вычисляется статический момент площади, ограниченной строевой по шпангоутам, относительно мидель – шпангоута, при чем абсциссы носовых шпангоутов берутся со знаком плюс, кормовых – со знаком минус. При десяти теоретических шпангоутах:

Абсцисса ЦВ от миделя составляет:

Расчеты по определению координат центра тяжести судна . Расчеты по определению координат центра тяжести судна удобно вести в табличной форме, которая называется весовым журналом. В этот журнал заносятся веса всех элементов самого судна и всех грузов, находящихся на нем.
Если учесть свойства строевых по шпангоутам и ватерлиниям, то определение местоположения центра величины судна сведется к вычислению абсциссы центра тяжести строевой по шпангоутам и ординаты центра тяжести строевой по ватерлиниям.
Воспользовавшись известным из статики определением для статического момента площади, можно написать формулы для определения координат центра величины судна:

где wi и wi* — площади частей строевых, заключенных между двумя смежными шпангоутами или ватерлиниями; Xi, Yi, Zi — координаты центров тяжестей соответствующих площадей.
При ориентировочных расчетах можно воспользоваться приближенными формулами для определения местоположения центра тяжести, центра величины и метацентра по высоте судна.
Ордината центра тяжести судна определяется по выражению:

где:
k — практический коэффициент, значение которого, например, для катеров лежит в пределах 0,68 — 0,73
h — высота борта судна.

Ординаты центра величины. Для вычисления ординаты центра величины рекомендуется формула академика В. Л. Поздюнина:

Zс = T/(1-b/a).

где Т — осадка
b(бетта) — коэффициент полноты водоизмещения
а(альфа) коэффициент полноты грузовой ватерлинии.

Диаграмма статической остойчивости. Диаграмма статической остойчивости.Очевидно, что полной характеристикой остойчивости яхты может быть кривая изменения восстанавливающего момента Мв в зависимости от угла крена или диаграмма статической остойчивости. На диаграмме хорошо различимы моменты максимума остойчивости (Ж) и предельного угла крена, при котором судно, будучи предоставлено само себе, опрокидывается (3-угол заката диаграммы статической остойчивости).С помощью диаграммы капитан судна имеет возможность оценивать, например, способность яхты нести ту или иную парусность при ветре определенной силы. Для этого на диаграмму остойчивости наносят кривые изменения кренящего момента Мкр в зависимости от угла крена. Точка Б пересечения обеих кривых указывает на угол крена, который получит яхта при статическом, с плавным нарастанием действии ветра. На рисунке, яхта получит крен, соответствующий точке Д, - около 29°. Для судов, имеющих явно выраженные нисходящие ветви диаграммы остойчивости (швертботов, компромиссов и катамаранов), плавание может быть допущено только при углах крена, не превышающих точки максимума на диаграмме остойчивости.


Сравнение обводов различных судов. При сравнении обводов различных судов и выполнении расчетов их мореходных качеств часто пользуются безразмерными коэффициенты полноты, объемов и площадей. К ним относятся:

коэффициент полноты водоизмещения или общей полноты δ , связывающий линейные размеры корпуса с его погруженным объемом. Этот коэффициент определяется как отношение объемного водоизмещения V по КВЛ к объему параллелепипеда, имеющего стороны, равные L, B и T;

Чем меньше коэффициент , тем более острые обводы имеет судно и, с другой стороны, тем меньше полезный объем корпуса ниже ватерлинии;

— коэффициент полноты площади ватерлинии — α и — β мидель – шпангоута; первый представляет собой отношение площади ватерлинии S к прямоугольнику со сторонами L и B;

Полнота ассортимента – количество разновидностей товара внутри вида.

Чем больше полнота ассортимента, тем выше вероятность того, что потребительский спрос на товары определенной группы может быть удовлетворен.

Повышенной полнотой ассортимента может служить одно из средств стимулирования сбыта и удовлетворения разнообразных потребностей, обусловленных разными вкусами, привычками и другими факторами.

Коэффициент полноты ассортимента отражает способность товаров однородной группы удовлетворять одинаковые потребности и рассчитывается по следующей формуле:

Кп = (Пб: Пд), где Кп – коэффициент полноты;

Пб – полнота базовая, перечень товаров в зависимости от объема упаковки в трех конкурентных торговых точках;

Пд – полнота действительная, фактическое количество соковой продукции в зависимости от объема упаковки, шт.

В ходе исследования было выявлено, что потребители при покупке сухого молока обращают внимание на такой признак, как объем упаковки товара. Это зависит от нужд каждого потребителя (размера и состава семьи и т.п.). Вследствие этого является целесообразным взять данный признак за основу при расчете коэффициента полноты ассортимента.

Причем с целью расчета коэффициента полноты рассматривался ассортимент продукции марки ООО "Троицкий пищевой комбинат".

Расчет показателя полноты: Кп = (3: 5) = 0,6

В ассортименте торговой точки «Винная карта» потребители могут найти продукцию марки ООО "Троицкий пищевой комбинат" далеко не во всех видах упаковки в зависимости от ее объема.

Вероятность того, что потребительский спрос будет удовлетворен полностью, не очень большая. Столь невысокий показатель полноты ассортимента соковой продукции в зависимости от объема упаковки объясняется тем, что покупатели данного магазина, являющиеся в большинстве постоянными, предпочитают приобретать сухое молоко в бумажной таре стандартного объема (0,5 кг).

Коэффициент новизны

Для многих потребителей важно видеть в ассортименте торговой точки последние новинки. Это связано с появлением новых видов, являющихся усовершенствованными. Таким образом, для комплексной оценки ассортимента также важно определить показатель новизны ассортимента.

Новизна ассортимента – способность набора товаров удовлетворять изменившиеся потребности за счет новых товаров.

Показатель новизны определяется как число новых товаров в общем перечне. Обновление ассортимента – одно из направлений ассортиментной политики организации. Проводится, как правило, в условиях насыщенного рынка. Причинами, побуждающими изготовителя и продавца обновлять ассортимент, являются:

Замена товаров морально устаревших,

Разработка новых товаров улучшенного качества;

Расширение ассортимента за счет

Увеличения полноты для создания конкурентных преимуществ.

Однако следует учитывать, что постоянное обновление ассортимента связано с определенным риском, что затраты могут не оправдаться, и новый товар не будет пользоваться спросом. Поэтому обновление должно быть рациональным.

Для расчета коэффициента новизны необходимо вычислить показатель новизны.

Путем опроса продавцов о поступлениях новинок за последние 4 месяца было установлено, что новых марочных наименований сухого молока поступил 1 вид.

Расчет коэффициента новизны выполняется по следующей формуле:

Кн = (Н: Шд) ,

где Кн – коэффициент новизны;

Н – количество новинок, поступивших в продажу за последние 4 месяца;

Шд – фактическая широта ассортимента.

Расчет: Кн = (1: 4) = 0,25

Коэффициент новизны для данной торговой точки составил 0,25. Столь малое значение коэффициента объясняется тем, что в настоящее время рынок СМС насыщен и новые марки сухого молока, практически не появляются.

Обновление ассортимента данного товара происходит в основном за счет появления новых вкусов.

Коэффициент устойчивости

Устойчивость ассортимента – способность набора товаров удовлетворять спрос на одни и те же товары.

Среди потребителей встречаются такие, которые редко меняют свои вкусы и предпочтения на протяжении всей жизни.

В большей степени к данной категории потребителей относятся люди старшего возраста, которые вообще с недоверием относятся ко всему новому. Исходя из этого, задачей торговой точки является ко всему прочему и удовлетворение спроса со стороны данной категории потребителей.

В исследуемой торговой точке магазине «Монетка» представлены марки сухого молока, которые постоянно пользуются спросом и находятся в продаже. Число устойчивых марок составляет в данной торговой точке 3. Значение было дано продавцом.

Коэффициент устойчивости ассортимента рассчитывается по следующей формуле:

Ку = (У: Шд) ,

где У (показатель устойчивости) – число марок соковой продукции, пользующихся устойчивым спросом у потребителей;

Шд – действительная широта ассортимента;

Ку – коэффициент устойчивости.

Расчет:

Ку = (3: 4) = 0,75.

Коэффициент устойчивости ассортимента, рассчитанный по формуле (4) составил 0,75.

То есть устойчивым спросом со стороны потребителей пользуется больше половины всего ассортимента торговой точки «Винная карта».

Именно данную часть ассортимента предприниматель заказывает в первую очередь при приобретении очередной партии.

Торговой точке нужно учитывать тот факт, что вкусы и привычки со временем меняются, поэтому устойчивость ассортимента должна быть рациональной.

ЛЕКЦИЯ №2

Геометрия судового корпуса. Главные размерения. Коэффициенты полноты. Классификация морских судов. Роль и задачи классификационных обществ.

Ограничительные поверхности и плоскости сечений корпуса судна, а также объемы почти невозможно описать математическими функциями. Поэтому для изображения формы корпуса рассекают его системой плоскостей (рис.1, 2).

Рис.1 – Система плоскостей корпуса судна

Геометрическая форма наружной поверхности корпуса судна изображается в виде теоретического чертежа (рис.3).

За плоскости проекций теоретического чертежа принимают следующие:

Основную плоскость (ОП), проходящую через средний прямолинейный участок линии киля

Диаметральную (вертикально-продольную), проходящую вдоль всего судна и условно делящую его на две симметричные части – правый и левый борт. Проекция судна на эту плоскость - бок .

Плоскость грузовой (ГВЛ) или конструктивной (КВЛ) ватерлинии, совпадающую с поверхностью спокойной воды при плавании судна по проектную осадку. Проекция судна на эту плоскость – полуширота .

Плоскость мидель-шпангоута (вертикально-поперечную), проходящую посредине расчетной длины судна и делящую его на две несимметричные части – носовую и кормовую. Проекция судна на эту плоскость - корпус .

Рис.2 - Изображение корпуса судна на теоретическом чертеже:

а - бок, b - корпус, с - полуширота, 1 - корпус носовой оконечности, 2 - диаметральная плоскость, 3 - корпус кормовой оконечности

Сечения судна плоскостями, параллельными плоскостям проекций, образуют три системы главных сечений: шпангоуты, ватерлинии и батоксы.

Рис.3 – Теоретический чертеж корпуса судна

Теоретический чертеж – основа всех судостроительных чертежей, например, положения и контура конструктивных шпангоутов (плазовый чертеж), разверток листов, а также теоретических расчетов судна (например, расчетов остойчивости и дифферента).

Главными геометрическими размерениями судна является его длина L , ширина B , высота борта H и осадка T (см. рис.4).

Длина наибольшая
- расстояние, измеренное в горизонтальной плоскости между крайними точками носовой и кормовой оконечностей корпуса без выступающих частей.

Длина по конструктивной ватерлинии
- расстояние, измеренное в плоскости конструктивной ватерлинии между точками пересечения ее носовой и кормовой частей с диаметральной плоскостью.

Длина между перпендикулярами
- расстояние, измеренное в плоскости конструктивной ватерлинии между носовым и кормовым перпендикулярами.

Рис.4 – Главные геометрические размерения судна

Длина по любой ватерлинии измеряется, как
.

Длина цилиндрической вставки - длина корпуса судна с постоянным сечением шпангоута.

Ширина наибольшая
- расстояние, измеренное между крайними точками корпуса без учета выступающих частей.

Ширина на мидель-шпангоуте В - расстояние, измеренное на мидель-шпангоуте между теоретическими поверхностями бортов на уровне конструктивной или расчетной ватерлинии.

Высота борта Н - вертикальное расстояние, измеренное на мидель-шпангоуте от горизонтальной плоскости, проходящей через точку пересечения килевой линии с плоскостью мидель-шпангоута, до бортовой линии верхней палубы.

Высота борта до главной палубы
- высота борта до самой верхней сплошной палубы.

Осадка (Т ) - вертикальное расстояние, измеренное в плоскости мидель-шпангоута от основной плоскости конструктивной или расчетной ватерлинии.

Осадка носом и осадка кормой и - измеряются на носовом и кормовом перпендикулярах до любой ватерлинии.

Средняя осадка Т ср - измеряется, от основной плоскости до ватерлинии в середине длины судна.

Носовая и кормовая седловатость h н и h к - плавный подъем палубы от миделя в нос и корму; величина подъема измеряется на носовом и кормовом перпендикулярах.

Погибь бимса h б - разница по высоте между краем и серединой палубы, измеренная в самом широком месте палубы.

Надводный борт F - расстояние, измеренное по вертикали у борта на середине длины судна от верхней кромки палубной линии до верхней кромки соответствующей грузовой марки.

Форма судна в известной мере характеризуется следующими коэффициентами полноты и соотношениями главных размерений (см. рис.5):

Рис.5 – Определение коэффициентов полноты корпуса судна

Коэффициент общей полноты водоизмещения - отношение объема подводной части корпуса к объему прямоугольного параллелепипеда с размерами ребер , , , в который вписывается этот объем (рис.5, а):

.

Коэффициент полноты площади ватерлинии
- отношение площади конструктивной (грузовой) ватерлинии к площади описанного вокруг нее прямоугольника со сторонами и (рис.5, б):

,

Коэффициент полноты площади мидель-шпангоута - отношение погруженной части площади мидель-шпангоута
к площади описанного вокруг него прямоугольника со сторонами и (рис.5, в):

,

Коэффициент вертикальной полноты корпуса - отношение объема подводной части корпуса к объему прямого цилиндра с основанием, ограниченным обводом конструктивной ватерлинии и образующей, равной осадке судна :

.

Коэффициент продольной полноты - отношение объема подводной части корпуса к объему цилиндра, основание которого очерчено обводом мидель-шпангоута, а длина образующих равна длине судна :

.

Основными соотношениями главных размерений являются
,
,
,
,
, а также обратные им соотношения.

Увеличивающийся поток грузов, перевозимых морским путем, стремление к снижению транспортных расходов и к максимальной загрузке имеющихся портов, разнообразие перевозимых грузов, развитие технологии судостроения, а также становящийся все более популярным туризм, - все это привело к тому, что традиционное, действовавшее еще полвека назад деление судов на пассажирские и грузовые сейчас уже не принято.

Суда классифицируются: по АКТ, по району плавания, по типу движителя и двигателя, по характеру движения и, наконец, по назначению. По АКТ различают суда полнонаборные и шельтердечные (рис. 6).

Полнонаборные суда имеют палубу, идущую от кормы до носа, которая одновременно служит палубой надводного борта и палубой переборок, так как до нее доводятся поперечные водонепроницаемые переборки (рис. 6, а). Разновидности полнонаборных судов: трехостровное, колодезное и колодезное с квартердеком. Трехостровное судно (рис. 6, b) имеет три надстройки: в корме (ют), посередине судна (средняя надстройка) у в носу (бак). Этот тип судна был распространен в период между двумя мировыми войнами. Иногда кормовую и среднюю надстройки объединяли в сплошную кормовую надстройку. При этом между кормовой надстройкой и баком образовывался так называемый колодец. Отсюда название «колодезное судно» (рис. 6, с). Объем трюмов ограничивается в корме туннелем гребного вала и формой кормовой оконечности. Для компенсации главную палубу в этом месте иногда приподнимали (рис. 6, d), обычно на половину твиндека, и возник так называемый квартердек.

а - полнонаборное судно 1 - верхняя палуба и палуба переборок; 2 - запас плавучести; 3 - переборки; 4 - твиндек

b - трехостровное судно 1 - ют; 2 - средняя надстройка; 3 - бак; 4 - главная (верхняя палуба)

с -колодезное судно 1 - верхняя палуба; 2 - удлиненный ют; 3 - колодец; 4 - бак

d - колодезное судно с квартердеком 1 - квартердек; 2 - верхняя палуба; 3 - средняя надстройка; 4 - колодец; 5 - бак

е шельтердечное судно 1 - главная палуба и шельтердек; 2 - обмерный люк; 3 - палуба надводного борта (палуба переборок); 4 - переборки

Рис.6 – Архитектурно-конструктивные типы судов

У полнонаборных судов и их разновидностей запас плавучести определяется объемом корпуса судна между ватерлинией при максимальной осадке и палубой переборок. На рисунке заштрихованная площадь соответствует запасу плавучести полнонаборных судов. Шельтердечные суда (рис. 6, е) обладают значительно меньшим запасом плавучести, чем полнонаборные. Верхняя палуба у шельтердечных судов служит одновременно главной палубой, а палуба переборок (палуба надводного борта) расположена ниже. На верхней палубе находятся надстройки, но они при обмере судна не принимаются во внимание, так как не являются непроницаемыми и сплошными. Эти надстройки показаны на рисунке темными прямоугольниками.

По району плавания различают суда неограниченного плавания, которые иногда называют также судами дальнего плавания или морскими судами, и суда ограниченного плавания (суда прибрежного плавания, суда для плавания в морских бухтах и т. д.

По типу главного двигателя различают суда с паровым двигателем (с поршневой паровой машиной и паровой турбиной); суда с двигателем внутреннего сгорания (с двигателем внутреннего сгорания и с газовой турбиной); суда с атомным двигателем. Это разделение судов по типу двигателя является весьма грубым.

По типу движителя суда с механическим приводом различают: суда с гребными колесами (в наше время почти не встречаются; суда с гребным винтом (винт фиксированного шага и винт регулируемого шага), который может также находиться в насадке; суда со специальным движителем (крыльчатым и водометным).

Другие, менее важные принципы классификации судов - по виду применяемого материала (суда из дерева, легких сплавов, пластмассы, железобетона) и по количеству корпусов (однокорпусные, двухкорпусные – катамараны и трехкорпусные – тримараны).

С развитием судостроения все актуальнее становится классификация судов по принципу движения на воде . Различают водоизмещающие суда (к ним относится подавляющее большинство морских судов) и суда, которые поддерживаются при движении динамической силой (суда на подводных крыльях и суда на воздушной подушке).

С точки зрения эксплуатации наиболее важным является деление судов по назначению, поскольку в последнее время быстро развивается специализация судов.

По назначению различают пассажирские суда, в том числе: линейные пассажирские лайнеры, круизные и каботажные пассажирские суда (для экскурсий и круизов) и грузовые суда, в том числе универсальные для генеральных грузов, контейнеровозы, накатные суда (суда с горизонтальной грузообработкой), баржевозы, для перевозки массовых грузов, танкеры, рефрижераторные и прочие суда для перевозки специальных грузов (например, для перевозки леса, машин, сверхтяжелых грузов и т.д.).

Грузовые суда можно подразделять также по виду их эксплуатации: на линейные суда, которые курсируют между портами по расписанию, и суда нерегулярного плавания (трампы), которые ходят в зависимости от накопления партии груза.

Следует еще назвать рыболовные суда (рыболовные исследовательские, промысловые, перерабатывающие суда-фабрики и транспортные для рыбы и рыбопродуктов), а также специальные и вспомогательные суда (для гидрографических и океанологических исследований, кабельные, буксиры, ледоколы, пожарные, спасательные и др.).

Морское судоходство - перевозка людей и грузов морем - издавна связано с определенным риском. Не всегда судно было в состоянии противостоять морской стихии. И в наше время случаются не только повреждения, но и гибель судов из-за неудовлетворительных прочности, остойчивости, надежности оборудования и оснащения судна, неправильного размещения груза, ошибок в судовождении, а также вследствие пожаров, столкновений и посадок на мели. Поэтому повышение безопасности плавания судов всегда было серьезной задачей. В XVIII-ом столетии возникли первые национальные классификационные общества, которые распределили морские суда того времени - парусные - на соответствующие классы в зависимости от их мореходности. После гибели участвовавшего в гонках за «Голубую ленту» пассажирского лайнера «Титаник» в 1912 г. был проведен ряд международных конференций по безопасности судов и приняты соответствующие конвенции.

После второй мировой войны в рамках ООН была образована Межправительственная морская консультативная организация (ИМКО), в компетенцию которой входит международное сотрудничество по вопросам безопасности в области судостроения и судоходства. Международная конвенция по охране человеческой жизни на море 1960 г. и новое Международное соглашение о грузовых марках 1966 г. признаны почти всеми правительствами судоходных государств и нашли отражение в юридических бюллетенях, правилах и т. д. Наряду с этим существуют и другие национальные правила, которые касаются безопасности судоходства и судов. Соблюдение правил постройки судов, которые содержатся в вышеназванных договорах и соглашениях, контролируется национальными классификационными или другими государственными органами.

Так как безопасность судна зависит главным образом от его прочности, остойчивости, надежности оборудования и оснащения, страховые общества при заключении договора определяют характеристики и состояние судна. Для того чтобы не ошибиться, страховые общества в прошлом держали на службе собственных экспертов, которые должны были судить о техническом состоянии судов. Возникшие позже объединения экспертов разделили все суда на классы в зависимости от их мореходности и присвоили каждому классу определенный знак. Первый печатный перечень, в котором определенными символами были обозначены характеристики судов, появился в 1764 г. в Англии - он был издан Регистром Ллойда. Это классификационное общество возникло в 1760 г. и наряду с французским Бюро Веритас, основанным в 1828 г., является старейшим. Все страны с развитым судоходством имеют собственные национальные классификационные организации, которые на основе опыта постройки и эксплуатации судов издают Правила их классификации, постройки и обеспечения безопасности судов.

Основные задачи классификационных обществ:

    Разработка и издание Правил;

    Проверка классификационной документации (чертежей) на новых и переоборудованных судах;

    Приемка судов на верфях и надзор за постройкой новых судов, а также за ремонтом и переоборудованием старых;

    Классификация и классификационные (ревизионные) осмотры судов, находящихся в эксплуатации;

    Регистрация судов в судовом Регистре.

Издание Правил необходимо для того, чтобы информировать пароходства, проектные бюро и судостроительные верфи об условиях классификации. В них содержатся требования к материалам, размеры и условия изготовления деталей корпуса судна, правила монтажа механических и электрических установок, технология выполнения сварки и клепки, правила по оборудованию и оснащению, обеспечению необходимой остойчивости и защиты от пожаров. Кроме того, издаются Правила для особых типов судов и установок (танкеров, рудовозов и судов для массовых грузов, яхт, трюмных холодильных установок и т. д.). Существуют Правила, которые относятся к безопасности эксплуатации и движения судов, такие как Правила по обеспечению непотопляемости, Правила содержания радио-, теле- и навигационных установок, Предписания или рекомендации по размещению грузов - зерна, руды и т. д. Объем правил, публикуемых классификационными организациями, зависит от возложенных на них задач и данных им прав.

При проведении надзора за постройкой на верфи и классификации судов классификационные органы исходят из соответствующей документации. В документах (чертежах, расчетах, описаниях) должны содержаться все данные, которые необходимы для оценки прочности и надежности судна в целом или отдельных установок и частей оборудования. Постройку новых и переоборудуемых старых судов можно производить только после утверждения всей необходимой для этого документации.

При классификации судна исходят из того, что его корпус, установки, оборудование и устройства должны соответствовать требованиям, имеющим юридическую силу. Класс присваивается судну на несколько лет, если оно находится в удовлетворительном состоянии. На судне проводятся регулярные классификационные осмотры - ревизии. Обычно суда осматриваются раз в год на плаву с целью подтверждения класса и каждые 3-5 лет в доке для обновления класса. От этого правила бывают отклонения: суда с более сильным износом и старые, которые уже не имеют наивысшего класса, осматриваются через более короткие промежутки времени. Пассажирские суда раз в год, а грузовые и прочие морские суда один раз между двумя осмотрами по обновлению класса подвергаются осмотру днища в доке. Наряду с этими регулярными ревизиями проводятся также особые ревизии после аварии, пожара или другого повреждения судна.

Классификация судна подтверждается:

Присвоением ему класса;

Составлением аттестата класса судна (сертификата) и других документов, а также передачей их владельцу судна (судовладельцу, капитану).

Список судов, которым присвоен класс Регистра, ежегодно публикуется классификационными обществами.

С ростом интенсивности судоходства увеличилось также количество морских катастроф, в результате которых гибнут люди и большие материальные ценности. К причинам многих несчастных случаев следует отнести неудовлетворительное состояние предохранительных устройств, недостаточную прочность и неполноценное оборудование судов, а также слабую профессиональную подготовку членов экипажей. Поэтому морские страны договорились о минимальных требованиях, которые должны предъявляться к судам в отношении их безопасности. Первое соглашение 1914 года было в 1929 г. заменено Лондонской конвенцией об охране человеческой жизни на море (СОЛАС 1929), которая в 1948 и в 1960 гг. переиздавалась. Новые изменения были разработаны конференцией, проведенной в 1972 г. СОЛАС содержит требования, которые обязательны для всех судов (за исключением военных) государств - участников договора.

Эти требования в основном касаются:

Текущих осмотров и проверок судов, включая машинные установки, устройства и оборудование, а также составления свидетельств о безопасности;

Конструкции судна в отношении разделения корпуса пассажирских судов переборками и остойчивости поврежденных судов;

Выполнения и установки переборок пиков и машинного отделения, туннеля гребного вала, двойного дна;

Закрытия отверстий в водонепроницаемых переборках и в наружной обшивке ниже предельной осадки;

Водоотливных систем на пассажирских судах;

Документации по остойчивости для пассажирских и грузовых судов, а также планов обеспечения безопасности при поступлении воды для машин и электрических установок;

Противопожарной защиты, обнаружения и тушения пожаров на пассажирских и грузовых судах, а также общих мероприятий по борьбе с пожарами;

Оборудования пассажирских и грузовых судов спасательными средствами;

Оборудования судов телеграфными и радиотелефонными установками.

Различают конструктивные, расчетные, наибольшие и габаритные размерения корпуса судна. К конструктивным размерениям, под которыми понимают главные размерения, относятся:

Н - носовой перпендикуляр, К - кормовой перпендикуляр, L - длина судна, В - ширина судна, Н - высота борта, F - высота надводного борта, d - осадка.

- длина судна (L) - расстояние по КВЛ между крайними точками пересечения ее с ДП. –

ширина судна (В) - наибольшая ширина КВЛ.

- высота борта (Н) - расстояние, измеряемое в плоскости мидель-шпангоута от основной плоскости до линии палубы у борта.

- осадка судна (d) - расстояние между плоскостями KBЛ и основной, измеряемое в сечении, где пересекаются плоскости мидель-шпангоута и диаметральная.

Размерения, соответствующие погружению судна по расчетную ватерлинию, называются расчетными . Наибольшие размерения соответствуют максимальным размерам корпуса без выступающих частей (штевней, наружной обшивки и т.д.). А габаритные размерения соответствуют максимальным размерам корпуса с учетом выступающих частей.

Форма корпуса определяется соотношениями главных размерений и коэффициентами полноты. Наиболее важными характеристиками являются отношения:

L/B - значительной степени определяющее ходкость судна: чем больше скорость судна, тем больше это отношение;

В/d - характеризующее остойчивость и ходкость судна;

Н/d - определяющее остойчивость и непотопляемость судна;

L/H - от которого в известной степени зависит прочность корпуса судна.

Для характеристики формы обводов корпуса различных судов служат так называемые коэффициенты полноты . Они не дают полное представления о форме корпуса, но позволяют численно оценить главные ее особенности. Основными безразмерными коэффициентами полноты формы подводного объема корпуса судна являются:

- коэффициент полноты водоизмещения (общей полноты) δ - это отношение погруженного в воду объема корпуса, называемого объемным водоизмещением V , к объему параллелепипеда со сторонами L, B, d:

Коэффициент полноты площади мидель-шпангоутаβ - отношение площади мидель-шпангоута ω Ф к площади прямоугольника со сторонами В, d;

Коэффициент вертикальной полноты χ - отношение объемного водоизмещения V к объему призмы, основанием которой служит площадь ватерлинии S , а высотой - осадка судна d:

χ = V/(S×d)=δ/α

Приведенные выше коэффициенты полноты обычно определяются для судна, сидящего по грузовую ватерлинию. Однако они могут быть отнесены также и к другим осадкам, причем входящие в них линейные размеры, площади и объемы берут в этом случае для действующей ватерлинии судна.

Судовая архитектура.

Судовой архитектурой называется общее расположение элементов корпуса, оборудования, устройств, планировка судовых помещений, которые должны быть выполнены наиболее рационально, с соблюдением требований безопасности.

Главными архитектурными элементами всякого судна являются: корпус судна с его палубами, платформами, прочными поперечными и продольными переборками, надстройками и рубками.

Палубой называется сплошное перекрытие на судне, идущее в горизонтальном направлении. Палуба, идущая не по всей длине или ширине судна, а только на ее части, называется платформой. Внутреннее пространство корпуса по высоте разделяется палубами и платформами на межпалубное пространство, которые называются твиндеками (минимальная высота 2.25м).

Верхней палубой (или расчетной) называется палуба, составляющая верхний пояс поперечного сечения прочной части корпуса судна. Название остальных палуб дается от верхней палубы, считая вниз, в зависимости от их местоположения (вторая, третья и т.д.). Палуба идущая над днищем на протяжении некоторой части длины судна и конструктивно связанное с ним, называется вторым дном. Палубы расположенные вверх от верхней палубы, носят названия в соответствии с назначением (прогулочная, шлюпочная и т.д.), палуба над рулевой рубкой называется верхний мостик.

По длине корпус судна разделяется прочными поперечными водонепроницаемыми переборками, образующими водонепроницаемые помещения, которые называются отсеками.

Помещения расположенные над вторым дном, и предназначенные для размещения в них сухих грузов, называются трюмами.

Отсеки в которых расположены главные силовые установки называются машинным отделением .

Всякая емкость, образованная конструкциями корпуса и предназначен-ная для размещения в ней жидких грузов, называется цистерной . Емкость для жидких грузов, размещенная вне второго дна, называется диптанком.

Танками называются отсеки на наливных судах, предназначенные для перевозки жидких грузов.

Некоторые отсеки имеют специальные наименования:

· Концевой – первый отсек от форштевня называется форпик , а первая поперечная водонепроницаемая переборка называется форпиковой или таранной.

· Концевой – последний отсек перед ахтерпиком, называется ахтерпиком , а переборка называется ахтерпиковой.

· Узкие отсеки, отделяющие цистерны от других помещений, называются коффердамами . Они должны быть пустыми, хорошо вентилируемые и удобны для осмотра образующих их переборок.

Для разделения корпуса судна по ширине в некоторых случаях ставят прочные водонепроницаемые продольные переборки.

Выгородками на судах называются всякие легкие водонепроницаемые переборки, разделяющие помещения.

Шахтами – называются отсеки, ограниченные вертикальными переборками, проходящие через несколько палуб, и не имеющих горизонтальных перекрытий.

Надстройкой называется закрытое сооружение на верхней палубе, простирающееся от одного борта до другого, и не доходящее до борта на расстояние, не превышающее 0.04 ширины судна. Пространство на верхней палубе от форштевня до носовой переборки носовой надстройки называется баком. Пространство на верхней палубе от кормовой переборки кормовой надстройки до ахтерштевня называется ютом. Пространство на верхней палубе между носовой и кормовой надстройками называется шкафутом .

Рубкой называется всякого рода закрытое помещение на верхней или выше лежащих палубах надстроек, продольные наружные переборки которого не доходят до бортов основного корпуса на расстояние более 0.04 ширины корпуса судна.

Мостиком называется узкая поперечная платформа, идущая поперек судна с одного борта до другого. Часть мостика, выступающая за наружные продольные переборки, расположенной под ним рубки, называется крылом мостика.

Фальшбортом называется сплошное ограждение открытой палубы, выполненное из листового материала. На верхней торцевой кромке фальшборт отделан горизонтальной полосой, называемой планширем . Обшивка фальшборта подкрепляется к корпусу косыми стойками, которые называются контрфорсами. По длине фальшборта делают отверстия для быстрого стока воды, попавшей на палубу, которые называются штормовыми портиками . Пространство у фальшборта идущее вдоль борта на верхней палубе по всему периметру, служащее для стока воды называется ватервейсным желобом (ватервейсом ). Отверстие с трубкой служащее для стока воды с ватервейсного желоба называется шпигатом.


Рангоутом называются круглые деревянные или стальные трубчатые части вооружения судов, расположенных на открытой палубе и предназначены для несение сигналов, конструкций приборов связи, служащих опорами для грузовых устройств. К рангоуту относятся мачты, стеньги, стрелы, реи, гафели и т.п.

Такелаж – наименование всех тросов, составляющих вооружение отдельных мачт. Такелаж служит для удержания и постоянного раскрепления рангоута в надлежащем положении называется стоячим такелажем. Весь остальной такелаж, который может передвигаться по блокам называется бегучим.